Câu hỏi:

19/10/2025 181 Lưu

Cho hình hộp \(ABCD.A'B'C'D'\)

Hình ảnh 1

Khi đó \(\overrightarrow {AA'} + \overrightarrow {AD} \) bằng

\(\overrightarrow {AD'} \).

\(\overrightarrow {AB'} \).

\(\overrightarrow {AC'} \).

\(\overrightarrow {AC} \).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Theo quy tắc cộng vectơ, \(\overrightarrow {AA'} + \overrightarrow {AD} = \overrightarrow {AD'} \). Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Giả sử sau 5 giây cabin di chuyển đến điểm \(M\left( {x;y;z} \right)\).

Khi đó ta có \(\overrightarrow {AM} \) và \(\overrightarrow u \) cùng hướng suy ra \(\overrightarrow {AM} = t\overrightarrow u = \left( {t;2t; - 2t} \right)\left( {t > 0} \right)\).

Mà quãng đường cabin đi được trong 5 giây là \(6.5 = 30\)(m).

Do đó \(AM = 30 \Leftrightarrow A{M^2} = 900 \Leftrightarrow {t^2} + 4{t^2} + 4{t^2} = 900 \Rightarrow t = 10\).

Suy ra \(\overrightarrow {AM} = \left( {10;20; - 20} \right)\) \( \Leftrightarrow \left\{ \begin{array}{l}x + 1 = 10\\y - 4 = 20\\z - 3 = - 20\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 9\\y = 24\\z = - 17\end{array} \right.\) \( \Rightarrow M\left( {9;24; - 17} \right)\).

Khi đó khoảng cách giữa cabin và người quan sát là \(BM = \sqrt {{{\left( {9 - 2} \right)}^2} + {{\left( {24 - 0} \right)}^2} + {{\left( { - 17 + 1} \right)}^2}} = \sqrt {881} \) m.

Lời giải

Gọi \(I\) là trọng tâm của tam giác \(ABC\).

Khi đó \(I\left( {1;1; - 1} \right)\) và \(\overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} = \overrightarrow 0 \).

Khi đó \(f = \left| {\overrightarrow {MA} + \overrightarrow {MB} + \overrightarrow {MC} } \right| + 3\left| {\overrightarrow {MD} } \right|\)\( = \left| {3\overrightarrow {MI} + \overrightarrow {IA} + \overrightarrow {IB} + \overrightarrow {IC} } \right| + 3\left| {\overrightarrow {MD} } \right| = 3\left( {\left| {\overrightarrow {MI} } \right| + \left| {\overrightarrow {MD} } \right|} \right)\).

Bài toán trở thành tìm \(M\left( {a;b;0} \right) \in \left( {Oxy} \right)\) sao cho \(f = 3\left( {\left| {\overrightarrow {MI} } \right| + \left| {\overrightarrow {MD} } \right|} \right)\) đạt giá trị nhỏ nhất.

Vì \({z_I}.{z_D} > 0\) nên điểm \(I\) và \(D\) nằm cùng phía với mặt phẳng \(\left( {Oxy} \right)\).

Gọi \(I'\left( {1;1;1} \right)\) là điểm đối xứng với \(I\) qua mặt phẳng \(\left( {Oxy} \right)\).

Khi đó \(f = 3\left( {\left| {\overrightarrow {MI} } \right| + \left| {\overrightarrow {MD} } \right|} \right) = 3\left( {\left| {\overrightarrow {MI'} } \right| + \left| {\overrightarrow {MD} } \right|} \right) \ge 3I'D\).

Để \(f\) nhỏ nhất thì \(I';M;D\) thẳng hàng suy ra \(\overrightarrow {I'M} \) và \(\overrightarrow {I'D} \) cùng hướng

\( \Leftrightarrow \frac{{a - 1}}{{ - 1}} = \frac{{b - 1}}{1} = \frac{{ - 1}}{{ - 3}}\)\( \Leftrightarrow \left\{ \begin{array}{l}a = \frac{2}{3}\\b = \frac{4}{3}\end{array} \right.\) \( \Rightarrow M\left( {\frac{2}{3};\frac{4}{3};0} \right)\).

Câu 5

\(\left( {4;1 + \sqrt 2 ; - 1} \right);\left( {4;1 - \sqrt 2 ; - 1} \right)\).

\(\left( {4;1; - 1} \right)\).

\[\left( {2;1; - 1} \right)\].

\(\left( {2; - 1; - 1} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP