Câu hỏi:

19/10/2025 18 Lưu

Cho ba điểm \(A\left( {3;1;0} \right),B\left( {2;1; - 1} \right),C\left( {x;y; - 1} \right)\). Tìm tọa độ \(C\) để tam giác \(ABC\) là tam giác vuông cân tại \(A\).

\(\left( {4;1 + \sqrt 2 ; - 1} \right);\left( {4;1 - \sqrt 2 ; - 1} \right)\).

\(\left( {4;1; - 1} \right)\).

\[\left( {2;1; - 1} \right)\].

\(\left( {2; - 1; - 1} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có \(\overrightarrow {AB} = \left( { - 1;0; - 1} \right) \Rightarrow A{B^2} = 2\); \(\overrightarrow {AC} = \left( {x - 3;y - 1; - 1} \right) \Rightarrow AC = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2} + 1} \).

Tam giác \(ABC\) vuông cân tại \(A\) nên \(\left\{ \begin{array}{l}\overrightarrow {AB} \bot \overrightarrow {AC} \\AB = AC\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = 0\\A{B^2} = A{C^2}\end{array} \right.\)

\( \Leftrightarrow \left\{ \begin{array}{l} - 1\left( {x - 3} \right) + 0\left( {y - 1} \right) + 1 = 0\\{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + 1 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\{x^2} + {y^2} - 6x - 2y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right.\).

Vậy \(C\left( {4;1; - 1} \right)\). Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).

Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).

Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);

Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).

Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).

Vậy sản lượng lớn nhất có thể đạt được là 459 kg.

Lời giải

a) Hàm số đồng biến trên các khoảng \(\left( { - 1;0} \right)\) và \(\left( {1; + \infty } \right)\).

b) Có \(y' = f'\left( {x + 2} \right)\).

Hàm số đồng biến khi \(f'\left( {x + 2} \right) > 0\) \( \Leftrightarrow \left[ \begin{array}{l} - 1 < x + 2 < 0\\x + 2 > 1\end{array} \right.\)\( \Leftrightarrow \left[ \begin{array}{l} - 3 < x < - 2\\x > - 1\end{array} \right.\).

Do đó hàm số \(y = f\left( {x + 2} \right)\) đồng biến trên các khoảng \(\left( { - 3; - 2} \right)\) và \(\left( { - 1; + \infty } \right)\).

c) \(f\left( x \right)\) có 3 điểm cực trị.

d) \(\mathop {\max }\limits_{\left[ { - 1;1} \right]} f\left( x \right) = f\left( 0 \right) = 2\).

Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

\(\overrightarrow {AD'} \).

\(\overrightarrow {AB'} \).

\(\overrightarrow {AC'} \).

\(\overrightarrow {AC} \).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng \(x = 2\)và \(x = - 2\).

Đồ thị hàm số đã cho không có tiệm cận ngang.

Đồ thị hàm số đã cho có đúng một tiệm cận ngang.

Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng \(y = 2\) và \(y = - 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP