Cho tứ diện đều \(ABCD\) cạnh bằng \(a\). Gọi \(M\) là trung điểm của \(CD\), \(G\) là trung điểm của \(AM\) biết \(\overrightarrow {BG} .\overrightarrow {AC} = n{a^2}\) ( \(n\) là số thập phân). Tìm \(n\) (kết quả làm tròn đến hàng phần mười).
Quảng cáo
Trả lời:

Ta có \(\overrightarrow {BG} .\overrightarrow {AC} = \left( {\overrightarrow {AG} - \overrightarrow {AB} } \right).\overrightarrow {AC} = \overrightarrow {AG} .\overrightarrow {AC} - \overrightarrow {AB} .\overrightarrow {AC} \)\( = \left| {\overrightarrow {AG} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AG} ,\overrightarrow {AC} } \right) - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos \left( {\overrightarrow {AB} ,\overrightarrow {AC} } \right)\)
\( = \frac{1}{2}\left| {\overrightarrow {AM} } \right|.\left| {\overrightarrow {AC} } \right|.\cos 30^\circ - \left| {\overrightarrow {AB} } \right|.\left| {\overrightarrow {AC} } \right|.\cos 60^\circ \)\( = \frac{1}{2}.\frac{{a\sqrt 3 }}{2}.a.\frac{{\sqrt 3 }}{2} - a.a.\frac{1}{2} = - \frac{1}{8}{a^2}\).
Suy ra \(n = - 0,1\).
Trả lời: −0,1.
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Số cá còn sống trong ao lúc đó là \(\frac{{31}}{{31 + t}}.300\) (con).
Sản lượng cá X tại thời điểm đó là \(f\left( t \right) = \frac{{31}}{{31 + t}}.300.0,45\left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)\)\( = 4185.\frac{{0,2 + \frac{{141}}{{155}}t - 0,05{t^2}}}{{31 + t}}\).
Ta có \(f'\left( t \right) = 4185.\left[ {\frac{{\left( {\frac{{141}}{{155}} - 0,1t} \right)\left( {31 + t} \right) - \left( {0,2 + \frac{{141}}{{155}}t - 0,05{t^2}} \right)}}{{{{\left( {31 + t} \right)}^2}}}} \right]\)\( = 4185.\frac{{ - 0,05{t^2} - 3,1t + 28}}{{{{\left( {31 + t} \right)}^2}}}\);
Có \(f'\left( t \right) = 0 \Leftrightarrow - 0,05{t^2} - 3,1t + 28 = 0 \Leftrightarrow t = 8\) vì \(0 \le t \le 8\).
Có \(f\left( 0 \right) = 27;f\left( 8 \right) = 459;f\left( {10} \right) \approx 439\).
Vậy sản lượng lớn nhất có thể đạt được là 459 kg.
Câu 2
\(\left( {4;1 + \sqrt 2 ; - 1} \right);\left( {4;1 - \sqrt 2 ; - 1} \right)\).
\(\left( {4;1; - 1} \right)\).
\[\left( {2;1; - 1} \right)\].
\(\left( {2; - 1; - 1} \right)\).
Lời giải
Ta có \(\overrightarrow {AB} = \left( { - 1;0; - 1} \right) \Rightarrow A{B^2} = 2\); \(\overrightarrow {AC} = \left( {x - 3;y - 1; - 1} \right) \Rightarrow AC = \sqrt {{{\left( {x - 3} \right)}^2} + {{\left( {y - 1} \right)}^2} + 1} \).
Tam giác \(ABC\) vuông cân tại \(A\) nên \(\left\{ \begin{array}{l}\overrightarrow {AB} \bot \overrightarrow {AC} \\AB = AC\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}\overrightarrow {AB} .\overrightarrow {AC} = 0\\A{B^2} = A{C^2}\end{array} \right.\)
\( \Leftrightarrow \left\{ \begin{array}{l} - 1\left( {x - 3} \right) + 0\left( {y - 1} \right) + 1 = 0\\{\left( {x - 3} \right)^2} + {\left( {y - 1} \right)^2} + 1 = 2\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\{x^2} + {y^2} - 6x - 2y + 9 = 0\end{array} \right.\)\( \Leftrightarrow \left\{ \begin{array}{l}x = 4\\y = 1\end{array} \right.\).
Vậy \(C\left( {4;1; - 1} \right)\). Chọn B.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\overrightarrow {AD'} \).
\(\overrightarrow {AB'} \).
\(\overrightarrow {AC'} \).
\(\overrightarrow {AC} \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng \(x = 2\)và \(x = - 2\).
Đồ thị hàm số đã cho không có tiệm cận ngang.
Đồ thị hàm số đã cho có đúng một tiệm cận ngang.
Đồ thị hàm số đã cho có hai tiệm cận ngang là các đường thẳng \(y = 2\) và \(y = - 2\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.