Câu hỏi:

19/10/2025 6 Lưu

Cho hình hộp chữ nhật \(ABCD.A'B'C'D'\) có \(AB = 2a,AD = 3a,A'A = 4a\).

index_html_33221cafe2273f8e.png

( a) \(\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC'} \).

( b) Gọi \(G\) là trọng tâm tam giác \(D'DC\). Khi đó \(\overrightarrow {AG} .\overrightarrow {DB} = - \frac{{23}}{3}{a^2}\).

( c) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CC'} } \right| = a\sqrt {29} \).

( d) \(\overrightarrow {AA'} .\overrightarrow {AD} = 12{a^2}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) \(\overrightarrow {AA'} + \overrightarrow {AB} + \overrightarrow {AD} = \overrightarrow {AC'} \) (theo quy tắc hình hộp).

b)

index_html_95d2dd321d18a7ac.gif

Gọi \(M\) là trung điểm của \(DC\).

Ta có \(\overrightarrow {AG} = \overrightarrow {AM} + \overrightarrow {MG} = \overrightarrow {AD} + \overrightarrow {DM} + \frac{1}{3}\overrightarrow {MD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {MD} + \frac{1}{3}\overrightarrow {DD'} \)\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{3}.\frac{1}{2}\overrightarrow {DC} + \frac{1}{3}\overrightarrow {AA'} \)

\( = \overrightarrow {AD} + \frac{1}{2}\overrightarrow {AB} - \frac{1}{6}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \)\( = \overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} \).

\(\overrightarrow {DB} = \overrightarrow {DA} + \overrightarrow {DC} \)\( = - \overrightarrow {AD} + \overrightarrow {AB} \).

Khi đó \(\overrightarrow {AG} .\overrightarrow {DB} = \left( {\overrightarrow {AD} + \frac{1}{3}\overrightarrow {AB} + \frac{1}{3}\overrightarrow {AA'} } \right)\left( { - \overrightarrow {AD} + \overrightarrow {AB} } \right)\)

\( = - {\overrightarrow {AD} ^2} - \frac{1}{3}\overrightarrow {AB} .\overrightarrow {AD} - \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AD} + \overrightarrow {AD} .\overrightarrow {AB} + \frac{1}{3}{\overrightarrow {AB} ^2} + \frac{1}{3}\overrightarrow {AA'} .\overrightarrow {AB} \)

\( = - {\overrightarrow {AD} ^2} + \frac{1}{3}{\overrightarrow {AB} ^2}\) (vì \(\overrightarrow {AB} .\overrightarrow {AD} = \overrightarrow {AA'} .\overrightarrow {AD} = \overrightarrow {AD} .\overrightarrow {AB} = \overrightarrow {AA'} .\overrightarrow {AB} = 0\))

\( = - 9{a^2} + \frac{1}{3}.4{a^2} = - \frac{{23}}{3}{a^2}\).

c) \(\left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {CC'} } \right| = \left| {\overrightarrow {AB} + \overrightarrow {AD} + \overrightarrow {AA'} } \right| = \left| {\overrightarrow {AC'} } \right| = \sqrt {4{a^2} + 9{a^2} + 16{a^2}} = a\sqrt {29} \).

d) Có \(AA' \bot AD\) nên \(\overrightarrow {AA'} .\overrightarrow {AD} = 0\).

Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).

Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).

Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).

Trả lời: \( - 9\).

Lời giải

Vì \(A \in Ox \Rightarrow A\left( {a;0;0} \right),B \in Oy \Rightarrow B\left( {0;b;0} \right)\).

Gọi \(G\) là trọng tâm tam giác \(ABC\), \(G \in Oz \Rightarrow G\left( {0;0;c} \right)\).

Do đó \(C\left( { - a; - b;3c} \right)\).

Ta có \(\overrightarrow {AB} = \left( { - a;b;0} \right),\overrightarrow {AC} = \left( { - 2a; - b;3c} \right)\).

Vì \(\Delta ABC\) vuông tại \(A\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)\( \Leftrightarrow 2{a^2} - {b^2} = 0 \Leftrightarrow {b^2} = 2{a^2}\).

Khi đó \(\frac{{OA}}{{OB}} = \frac{{\sqrt {{a^2}} }}{{\sqrt {{b^2}} }} = \sqrt {\frac{{{a^2}}}{{2{a^2}}}} = \frac{{\sqrt 2 }}{2}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP