Trong hệ trục tọa độ \(Oxyz\), cho tam giác \(ABC\) vuông tại \(A\) thuộc tia \(Ox\), \(B\) thuộc tia \(Oy\) và trọng tâm tam giác \(ABC\) thuộc tia \(Oz\). Tính tỉ số \(\frac{{OA}}{{OB}}\).
Quảng cáo
Trả lời:
Vì \(A \in Ox \Rightarrow A\left( {a;0;0} \right),B \in Oy \Rightarrow B\left( {0;b;0} \right)\).
Gọi \(G\) là trọng tâm tam giác \(ABC\), \(G \in Oz \Rightarrow G\left( {0;0;c} \right)\).
Do đó \(C\left( { - a; - b;3c} \right)\).
Ta có \(\overrightarrow {AB} = \left( { - a;b;0} \right),\overrightarrow {AC} = \left( { - 2a; - b;3c} \right)\).
Vì \(\Delta ABC\) vuông tại \(A\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)\( \Leftrightarrow 2{a^2} - {b^2} = 0 \Leftrightarrow {b^2} = 2{a^2}\).
Khi đó \(\frac{{OA}}{{OB}} = \frac{{\sqrt {{a^2}} }}{{\sqrt {{b^2}} }} = \sqrt {\frac{{{a^2}}}{{2{a^2}}}} = \frac{{\sqrt 2 }}{2}\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).
Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).
Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).
Trả lời: \( - 9\).
Lời giải
a) Khoảng biến thiên của mẫu số liệu trên là \(R = 6 - 0 = 6\).
b)
| Số giờ sử dụng (giờ) | \(\left[ {0;1} \right)\) | \(\left[ {1;2} \right)\) | \(\left[ {2;3} \right)\) | \(\left[ {3;4} \right)\) | \(\left[ {4;5} \right)\) | \(\left[ {5;6} \right)\) |
| Số học sinh | 3 | 15 | 12 | 9 | 5 | 1 |
| Tần số tích lũy | 3 | 18 | 30 | 39 | 44 | 45 |
Ta có \({Q_1} = 1 + \frac{{\frac{{45}}{4} - 3}}{{15}}.1 = \frac{{31}}{{20}}\).
Có \(\frac{{3n}}{4} = 33,75\). Nhóm \(\left[ {3;4} \right)\) là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 33,75 nên nhóm này chứa tứ phân vị thứ ba.
Có \({Q_3} = 3 + \frac{{\frac{{3.45}}{4} - 30}}{9}.1 = \frac{{41}}{{12}}\).
Khoảng tứ phân vị là \({\Delta _Q} = \frac{{41}}{{12}} - \frac{{31}}{{20}} = \frac{{28}}{{15}} \approx 1,9\).
c) Ta có bảng sau
| Số giờ sử dụng (giờ) | \(\left[ {0;1} \right)\) | \(\left[ {1;2} \right)\) | \(\left[ {2;3} \right)\) | \(\left[ {3;4} \right)\) | \(\left[ {4;5} \right)\) | \(\left[ {5;6} \right)\) |
| Giá trị đại diện | 0,5 | 1,5 | 2,5 | 3,5 | 4,5 | 5,5 |
| Số học sinh | 3 | 15 | 12 | 9 | 5 | 1 |
d) Phương sai của mẫu số liệu trên là
\[{s^2} = \frac{1}{{45}}\left( \begin{array}{l}3.{\left( {0,5 - \frac{{227}}{{90}}} \right)^2} + 15.{\left( {1,5 - \frac{{227}}{{90}}} \right)^2} + 12.{\left( {2,5 - \frac{{227}}{{90}}} \right)^2}\\ + 9.{\left( {3,5 - \frac{{227}}{{90}}} \right)^2} + 5.{\left( {4,5 - \frac{{227}}{{90}}} \right)^2} + 1.{\left( {5,5 - \frac{{227}}{{90}}} \right)^2}\end{array} \right) = \frac{{2924}}{{2025}}\].
Độ lệch chuẩn của mẫu số liệu là \[s = \sqrt {\frac{{2924}}{{2025}}} = \frac{{2\sqrt {731} }}{{45}}\].
Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.


