Câu hỏi:

19/10/2025 2,099 Lưu

Trong hệ trục tọa độ \(Oxyz\), cho tam giác \(ABC\) vuông tại \(A\) thuộc tia \(Ox\), \(B\) thuộc tia \(Oy\) và trọng tâm tam giác \(ABC\) thuộc tia \(Oz\). Tính tỉ số \(\frac{{OA}}{{OB}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Vì \(A \in Ox \Rightarrow A\left( {a;0;0} \right),B \in Oy \Rightarrow B\left( {0;b;0} \right)\).

Gọi \(G\) là trọng tâm tam giác \(ABC\), \(G \in Oz \Rightarrow G\left( {0;0;c} \right)\).

Do đó \(C\left( { - a; - b;3c} \right)\).

Ta có \(\overrightarrow {AB} = \left( { - a;b;0} \right),\overrightarrow {AC} = \left( { - 2a; - b;3c} \right)\).

Vì \(\Delta ABC\) vuông tại \(A\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)\( \Leftrightarrow 2{a^2} - {b^2} = 0 \Leftrightarrow {b^2} = 2{a^2}\).

Khi đó \(\frac{{OA}}{{OB}} = \frac{{\sqrt {{a^2}} }}{{\sqrt {{b^2}} }} = \sqrt {\frac{{{a^2}}}{{2{a^2}}}} = \frac{{\sqrt 2 }}{2}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).

Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).

Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).

Trả lời: \( - 9\).

Lời giải

a) Khoảng biến thiên của mẫu số liệu trên là \(R = 6 - 0 = 6\).

b)

Số giờ sử dụng (giờ)

\(\left[ {0;1} \right)\)

\(\left[ {1;2} \right)\)

\(\left[ {2;3} \right)\)

\(\left[ {3;4} \right)\)

\(\left[ {4;5} \right)\)

\(\left[ {5;6} \right)\)

Số học sinh

3

15

12

9

5

1

Tần số tích lũy

3

18

30

39

44

45

Có \(\frac{n}{4} = 11,25\). Nhóm \(\left[ {1;2} \right)\) là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 11,25 nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 1 + \frac{{\frac{{45}}{4} - 3}}{{15}}.1 = \frac{{31}}{{20}}\).

Có \(\frac{{3n}}{4} = 33,75\). Nhóm \(\left[ {3;4} \right)\) là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 33,75 nên nhóm này chứa tứ phân vị thứ ba.

Có \({Q_3} = 3 + \frac{{\frac{{3.45}}{4} - 30}}{9}.1 = \frac{{41}}{{12}}\).

Khoảng tứ phân vị là \({\Delta _Q} = \frac{{41}}{{12}} - \frac{{31}}{{20}} = \frac{{28}}{{15}} \approx 1,9\).

c) Ta có bảng sau

Số giờ sử dụng (giờ)

\(\left[ {0;1} \right)\)

\(\left[ {1;2} \right)\)

\(\left[ {2;3} \right)\)

\(\left[ {3;4} \right)\)

\(\left[ {4;5} \right)\)

\(\left[ {5;6} \right)\)

Giá trị đại diện

0,5

1,5

2,5

3,5

4,5

5,5

Số học sinh

3

15

12

9

5

1

Ta có \(\overline x = \frac{{3.0,5 + 15.1,5 + 12.2,5 + 9.3,5 + 5.4,5 + 1.5,5}}{{45}} = \frac{{227}}{{90}}\).

d) Phương sai của mẫu số liệu trên là

\[{s^2} = \frac{1}{{45}}\left( \begin{array}{l}3.{\left( {0,5 - \frac{{227}}{{90}}} \right)^2} + 15.{\left( {1,5 - \frac{{227}}{{90}}} \right)^2} + 12.{\left( {2,5 - \frac{{227}}{{90}}} \right)^2}\\ + 9.{\left( {3,5 - \frac{{227}}{{90}}} \right)^2} + 5.{\left( {4,5 - \frac{{227}}{{90}}} \right)^2} + 1.{\left( {5,5 - \frac{{227}}{{90}}} \right)^2}\end{array} \right) = \frac{{2924}}{{2025}}\].

Độ lệch chuẩn của mẫu số liệu là \[s = \sqrt {\frac{{2924}}{{2025}}} = \frac{{2\sqrt {731} }}{{45}}\].

Đáp án: a) Đúng; b) Sai; c) Sai; d) Sai.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP