Cho hàm số \(y = f\left( x \right)\) có đạo hàm \(f'\left( x \right) = \left( {x - 1} \right){\left( {x + 2} \right)^2}{\left( {x - 3} \right)^3}\) trên \(\mathbb{R}\). Hàm số đã cho có bao nhiêu điểm cực trị?
Quảng cáo
Trả lời:

Có \(f'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 1\\x = - 2\\x = 3\end{array} \right.\).
Ta có bảng biến thiên
Dựa vào bảng biến thiên ta có hàm số có 2 điểm cực trị.
Trả lời: \(2\).
Hot: Danh sách các trường đã công bố điểm chuẩn Đại học 2025 (mới nhất) (2025). Xem ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có \(y' = \frac{{1 - \ln x}}{{{x^2}}}\); \(y' = 0 \Leftrightarrow 1 - \ln x = 0 \Leftrightarrow \ln x = 1 \Leftrightarrow x = e \in \left[ {2;3} \right]\).
Ta có \(y\left( 2 \right) = \frac{{\ln 2}}{2};y\left( e \right) = \frac{1}{e};y\left( 3 \right) = \frac{{\ln 3}}{3}\).
Suy ra \(\mathop {\min }\limits_{\left[ {2;3} \right]} y = \frac{{\ln 2}}{2}\). Suy ra \(a = 1;b = 2\). Do đó \(a - 5b = 1 - 5.2 = - 9\).
Trả lời: \( - 9\).
Lời giải
Vì \(A \in Ox \Rightarrow A\left( {a;0;0} \right),B \in Oy \Rightarrow B\left( {0;b;0} \right)\).
Gọi \(G\) là trọng tâm tam giác \(ABC\), \(G \in Oz \Rightarrow G\left( {0;0;c} \right)\).
Do đó \(C\left( { - a; - b;3c} \right)\).
Ta có \(\overrightarrow {AB} = \left( { - a;b;0} \right),\overrightarrow {AC} = \left( { - 2a; - b;3c} \right)\).
Vì \(\Delta ABC\) vuông tại \(A\) nên \(\overrightarrow {AB} .\overrightarrow {AC} = 0\)\( \Leftrightarrow 2{a^2} - {b^2} = 0 \Leftrightarrow {b^2} = 2{a^2}\).
Khi đó \(\frac{{OA}}{{OB}} = \frac{{\sqrt {{a^2}} }}{{\sqrt {{b^2}} }} = \sqrt {\frac{{{a^2}}}{{2{a^2}}}} = \frac{{\sqrt 2 }}{2}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.