Câu hỏi:

19/10/2025 239 Lưu

Biết \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - \left( {ax + b} \right)} \right) = 0\). Khi đó:

a) \(a\) là số lẻ.

b) \(b > 0\).

c) \(a.b < 0\).

d) \[a - 4b = 5\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) S, b) S, c) Đ, d) Đ

Ta có

\[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - \left( {ax + b} \right)} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\left( {\sqrt {4{x^2} - 3x + 1} - ax} \right) - b} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{4{x^2} - 3x + 1 - {a^2}{x^2}}}{{\sqrt {4{x^2} - 3x + 1} + ax}} - b} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{\left( {4 - {a^2}} \right){x^2} - 3x + 1}}{{\sqrt {4{x^2} - 3x + 1} + ax}} - b} \right) = 0\]

\[ \Leftrightarrow \left\{ \begin{array}{l}4 - {a^2} = 0\\a > 0\\\frac{{ - 3}}{{2 + a}} - b = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - \frac{3}{4}\end{array} \right.\].

Vậy \[a - 4b = 5\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6

Cho hình chóp \(S.ABCD\) có đáy \(ABC (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), \(F\) là giao điểm của \(AM\)\(CD\) trong mặt phẳng \(\left( {ABCD} \right)\).

Theo định lí Talet, ta có \(\frac{{MA}}{{MF}} = \frac{{MB}}{{MC}} = 1 \Rightarrow MA = MF \Rightarrow M\) là trung điểm của \(AF\).

Suy ra \(\frac{{AG}}{{AF}} = \frac{{AG}}{{2AM}} = \frac{1}{3}\).

Ta có \(\left\{ \begin{array}{l}GE \subset \left( {SAF} \right)\\GE//\left( {SCD} \right)\\\left( {SAF} \right) \cap \left( {SCD} \right) = SF\end{array} \right.\)\( \Rightarrow GE//SF \Rightarrow \frac{{AE}}{{AS}} = \frac{{AG}}{{AF}} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS\).

Suy ra \(SE = \frac{2}{3}SA \Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6\).

Lời giải

Trả lời: −0,5

\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - \sqrt[3]{{{x^3} + 1}}} \right)\)\( = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - x - \sqrt[3]{{{x^3} + 1}} + x} \right)\)

\[ = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - x} \right) - \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt[3]{{{x^3} + 1}} - x} \right)\]

\[ = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - x}}{{\sqrt {{x^2} - x} + x}} - \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt[3]{{{{\left( {{x^3} + 1} \right)}^2}}} + x\sqrt[3]{{{x^3} + 1}} + {x^2}}}\]

\[ = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1}}{{\sqrt {1 - \frac{1}{x}} + 1}} - 0 = - 0,5\].

Câu 6

A. \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]                                                       
B. \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]    
C. \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\] 
D. \(A{A_1}{B_1}B\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP