PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Số giờ có ánh sáng của một thành phố trong ngày thứ \(t\) của một năm không nhuận được cho bởi hàm số \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12,t \in \mathbb{Z}\) và \(0 < t \le 365\). Vào ngày thứ mấy trong năm thì thành phố có nhiều giờ ánh sáng nhất?
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời câu 1 đến câu 6.
Số giờ có ánh sáng của một thành phố trong ngày thứ \(t\) của một năm không nhuận được cho bởi hàm số \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12,t \in \mathbb{Z}\) và \(0 < t \le 365\). Vào ngày thứ mấy trong năm thì thành phố có nhiều giờ ánh sáng nhất?
Quảng cáo
Trả lời:
Trả lời: 171
Ta có \(s\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 \le 3 + 12 = 15\).
Dấu bằng xảy ra khi \(\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 1\)\( \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = \frac{\pi }{2} + k2\pi \left( {k \in \mathbb{Z}} \right)\)\( \Leftrightarrow t = 171 + 364k\)
Vì \(t \in \left( {0;365} \right]\) nên \(0 < 171 + 364k \le 365\)\( \Leftrightarrow - \frac{{171}}{{364}} < k \le \frac{{194}}{{364}}\).
Mà \(k \in \mathbb{Z}\) nên \(k = 0\). Vậy \(t = 171\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Trả lời: 6

Gọi \(M\) là trung điểm của \(BC\), \(F\) là giao điểm của \(AM\) và \(CD\) trong mặt phẳng \(\left( {ABCD} \right)\).
Theo định lí Talet, ta có \(\frac{{MA}}{{MF}} = \frac{{MB}}{{MC}} = 1 \Rightarrow MA = MF \Rightarrow M\) là trung điểm của \(AF\).
Suy ra \(\frac{{AG}}{{AF}} = \frac{{AG}}{{2AM}} = \frac{1}{3}\).
Ta có \(\left\{ \begin{array}{l}GE \subset \left( {SAF} \right)\\GE//\left( {SCD} \right)\\\left( {SAF} \right) \cap \left( {SCD} \right) = SF\end{array} \right.\)\( \Rightarrow GE//SF \Rightarrow \frac{{AE}}{{AS}} = \frac{{AG}}{{AF}} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS\).
Suy ra \(SE = \frac{2}{3}SA \Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6\).
Lời giải
a) S, b) S, c) Đ, d) Đ
Ta có
\[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - \left( {ax + b} \right)} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\left( {\sqrt {4{x^2} - 3x + 1} - ax} \right) - b} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{4{x^2} - 3x + 1 - {a^2}{x^2}}}{{\sqrt {4{x^2} - 3x + 1} + ax}} - b} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{\left( {4 - {a^2}} \right){x^2} - 3x + 1}}{{\sqrt {4{x^2} - 3x + 1} + ax}} - b} \right) = 0\]
\[ \Leftrightarrow \left\{ \begin{array}{l}4 - {a^2} = 0\\a > 0\\\frac{{ - 3}}{{2 + a}} - b = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - \frac{3}{4}\end{array} \right.\].
Vậy \[a - 4b = 5\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.