Câu hỏi:

19/10/2025 199 Lưu

Cho tứ diện \(ABCD\). Gọi \(M,N,I\) lần lượt là trung điểm của các cạnh \(CD,AC,BD\). \(G\) là trung điểm \(NI\). Giả sử giao điểm của \(GM\)\(\left( {ABD} \right)\)\(F\). Tính tỉ số \(\frac{{FA}}{{FB}}\)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 1

Cho tứ diện \(ABCD\). Gọi \(M,N,I\) lần lượt (ảnh 1)

Ta có \(\left\{ \begin{array}{l}N \in \left( {MNI} \right) \cap \left( {ABC} \right)\\IM//BC\end{array} \right. \Rightarrow \left( {MNI} \right) \cap \left( {ABC} \right) = d\).

Với \(d\) là đường thẳng đi qua \(N\) và song song với \(BC\).

Gọi \(F = AB \cap d\).

Xét tứ giác \(MIFN\)\(\left\{ \begin{array}{l}MI//NF\\MI = NF\end{array} \right. \Rightarrow MIFN\) là hình bình hành.

\(G\) là trung điểm của \(NI\) nên \(M,G,F\) thẳng hàng.

Vậy \(MG \cap \left( {ABD} \right) = F \in AB\)\(F\) là trung điểm của \(AB\) nên \(\frac{{FA}}{{FB}} = 1\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6

Cho hình chóp \(S.ABCD\) có đáy \(ABC (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), \(F\) là giao điểm của \(AM\)\(CD\) trong mặt phẳng \(\left( {ABCD} \right)\).

Theo định lí Talet, ta có \(\frac{{MA}}{{MF}} = \frac{{MB}}{{MC}} = 1 \Rightarrow MA = MF \Rightarrow M\) là trung điểm của \(AF\).

Suy ra \(\frac{{AG}}{{AF}} = \frac{{AG}}{{2AM}} = \frac{1}{3}\).

Ta có \(\left\{ \begin{array}{l}GE \subset \left( {SAF} \right)\\GE//\left( {SCD} \right)\\\left( {SAF} \right) \cap \left( {SCD} \right) = SF\end{array} \right.\)\( \Rightarrow GE//SF \Rightarrow \frac{{AE}}{{AS}} = \frac{{AG}}{{AF}} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS\).

Suy ra \(SE = \frac{2}{3}SA \Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6\).

Lời giải

a) S, b) S, c) Đ, d) Đ

Ta có

\[\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {4{x^2} - 3x + 1} - \left( {ax + b} \right)} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\left( {\sqrt {4{x^2} - 3x + 1} - ax} \right) - b} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{4{x^2} - 3x + 1 - {a^2}{x^2}}}{{\sqrt {4{x^2} - 3x + 1} + ax}} - b} \right) = 0\]\[ \Leftrightarrow \mathop {\lim }\limits_{x \to + \infty } \left( {\frac{{\left( {4 - {a^2}} \right){x^2} - 3x + 1}}{{\sqrt {4{x^2} - 3x + 1} + ax}} - b} \right) = 0\]

\[ \Leftrightarrow \left\{ \begin{array}{l}4 - {a^2} = 0\\a > 0\\\frac{{ - 3}}{{2 + a}} - b = 0\end{array} \right.\]\[ \Leftrightarrow \left\{ \begin{array}{l}a = 2\\b = - \frac{3}{4}\end{array} \right.\].

Vậy \[a - 4b = 5\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(\left( {ABC} \right)\)//\[\left( {{A_1}{B_1}{C_1}} \right).\]                                                       
B. \(A{A_1}\)//\[\left( {BC{C_1}} \right).\]    
C. \(AB\)//\[\left( {{A_1}{B_1}{C_1}} \right).\] 
D. \(A{A_1}{B_1}B\) là hình chữ nhật.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP