Gọi \[S\] là tập các giá trị nguyên của \[x\] thỏa mãn biểu thức \(\sqrt x < 7\). Số phần tử của tập \[S\] là
Câu hỏi trong đề: Đề kiểm tra Toán 9 Cánh diều Chương 3 có đáp án !!
Quảng cáo
Trả lời:
Chọn C
Ta có: \[\sqrt x < 7\] nên \[{\left( {\sqrt x } \right)^2} < {7^2}\] hay \[x < 49\].
Vì \[x\] nguyên và \[x \ge 0\] nên \[S = \left\{ {0\,;\,\,1\,;\,\,2\,;\,\, \ldots \,;\,\,48} \right\}\].
Do đó, tập \[S\] có 49 phần tử.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay \(t = 7\) vào công thức \(t = \sqrt {\frac{{3\;d}}{{9,8}}} \), ta được:
\(\sqrt {\frac{{3\;d}}{{9,8}}} = 7\)
\(\frac{{3\;d}}{{9,8}} = 49\)
\(d = \frac{{49 \cdot 9,8}}{3} \approx 160\;\,({\rm{m)}}{\rm{.}}\)
Vậy độ cao của người nhảy bungee so với mặt nước khoảng \(160\,\;{\rm{m}}\,{\rm{.}}\)
Đáp án: 160.
Lời giải
a) Đúng. Ta có \[2\sqrt x - 6 = - 2\] hay \[2\sqrt x = 4.\]
b) Đúng. Ta có \[2\sqrt x - 6 = - 2\] hay \[2\sqrt x = 4\] nên \[\sqrt x = 2\] suy ra \[x = 4.\]
Phương trình có nghiệm là \[x = 4.\]
c) Sai. Ta có \[{x^3} = {4^3} = 64\].
d) Sai. Ta có \[{x^2} - 16 = 0\]
\[{x^2} = 16\]
\[x = - 4\] hoặc \[x = 4\].
Do đó, phương trình đã cho khác tập nghiệm với phương trình \[{x^2} - 16 = 0\].
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
