Câu hỏi:

22/10/2025 105 Lưu

Một cái thang dựa vào tường như hình bên dưới. Biết thang dài \[2\,\,{\mathop{\rm m}\nolimits} \] và tường cao \[1,3\,\,{\rm{m}}.\] Khoảng cách từ chân thang tới góc tường là

Một cái thang dựa vào tường như hình bên dưới. Biết thang dài  (ảnh 1)

 

A. \[2,13{\rm{ m}}{\rm{.}}\]                  
B. \[1,98{\rm{ m}}.\]   
C. \[1,5{\rm{ m}}.\]   
D. \[1,3{\rm{ m}}.\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn C

Áp dụng định lý Pythagore, ta có: \[{x^2} + {1,3^2} = {2^2}\].

Suy ra \[{x^2} = {2^2} - {1,3^2} = 2,31\].

Do đó, \[x = \sqrt {2,31}  \approx 1,5\,\,({\rm{m)}}{\rm{.}}\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \(x - 2025\).                
B. \( - x - 2025\).     
C. 2025.                     
D. \[-2025.\]

Lời giải

Chọn C

Ta có \(\sqrt {{x^2}}  + x - 2025 = \left| x \right| + x - 2025.\)

Do \(x < 0\) nên \(\left| x \right| =  - x\).

Do đó \(\sqrt {{x^2}}  + x - 2025 =  - x + x - 2025 =  - 2025\).

Vậy với \(x < 0\) thì \(\sqrt {{x^2}}  + x - 2025 =  - 2025\).

Lời giải

Thay \({\rm{v}} = 54\,\;{\rm{km}}/{\rm{h}} = 15\;{\rm{m}}/{\rm{s}}\) vào công thức \({\rm{v}} = 5\sqrt l \)

\(5\sqrt l  = 15\) hay \(\sqrt l  = 3\) nên \(l = 9\;\,{\rm{m}}\).

Vậy đường sóng nước để lại sau đuôi chiếc canô dài 9 m.

Đáp án: 9.