Câu hỏi:

20/10/2025 39 Lưu

Tìm giới hạn hàm số \(\mathop {\lim }\limits_{x \to 2} \frac{{2 - \sqrt {x + 2} }}{{{x^2} - 3x + 2}}\) kết quả dạng phân số \( - \frac{a}{b}\) với \(\frac{a}{b}\) là phân số tối giản. Hỏi tổng \(2a + 3b\) bằng bao nhiêu?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

\(\mathop {\lim }\limits_{x \to 2} \frac{{2 - \sqrt {x + 2} }}{{{x^2} - 3x + 2}}\)\( = \mathop {\lim }\limits_{x \to 2} \frac{{4 - \left( {x + 2} \right)}}{{\left( {x - 1} \right)\left( {x - 2} \right)\left( {2 + \sqrt {x + 2} } \right)}}\)\( = - \mathop {\lim }\limits_{x \to 2} \frac{1}{{\left( {x - 1} \right)\left( {2 + \sqrt {x + 2} } \right)}}\)\( = - \frac{1}{4}\).

Suy ra \(a = 1;b = 4\). Tổng \(2a + 3b = 2.1 + 3.4 = 14\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 9

Cho tứ diện \(ABCD\). Trên cạnh \( (ảnh 1)

Gọi \(I\) là giao điểm của đường thẳng \(MN\) và đường thẳng \(CD\).

Khi đó \(\left\{ \begin{array}{l}I \in MN\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\)\( \Rightarrow MN \cap \left( {BCD} \right) = \left\{ I \right\}\).

Kẻ \(DE//AC\left( {E \in IM} \right)\).

Do \(DE//CM\) nên \(\frac{{ID}}{{IC}} = \frac{{ED}}{{MC}} \Rightarrow \frac{{ID}}{{IC}} = \frac{{ED}}{{2AM}}\) (1).

Do \(DE//AM\) nên \(\frac{{ED}}{{AM}} = \frac{{ND}}{{NA}} = \frac{1}{2}\) (2).

Từ (1) và (2) ta có \[\frac{{ID}}{{IC}} = \frac{1}{4}\]. Vậy \(a + 2b = 9\).

Câu 2

A. Hàm số đồng biến trên \[\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right).\]                                             
B. Hàm số đồng biến trên \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right).\]    
C. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right).\]                                             
D. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]

Lời giải

Đáp án đúng là: D

Dựa vào đồ thị, ta có hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]