Câu hỏi:

20/10/2025 139 Lưu

Cho hình chóp tứ giác đều \(S.ABCD\) có cạnh đáy bằng 10. \(M\) là điểm trên \(SA\) sao cho \(\frac{{SM}}{{SA}} = \frac{2}{3}\). Một mặt phẳng \(\left( \alpha \right)\) đi qua \(M\) song song với \(AB\)\(CD\), cắt hình chóp theo một tứ giác. Hãy xác định diện tích của tứ giác đó (làm tròn tới hàng phần mười).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 44,4

Cho hình chóp tứ giác đều \(S.ABC (ảnh 1)

Ta có \(\left\{ \begin{array}{l}AB//\left( \alpha \right)\\CD//\left( \alpha \right)\end{array} \right.\).

Giả sử \(\left( \alpha \right)\) cắt các mặt bên \(\left( {SAB} \right),\left( {SBC} \right),\left( {SCD} \right),\left( {SDA} \right)\) lần lượt tại các điểm \(N,P,Q\) với \(N \in SB,P \in SC,Q \in SD\). Suy ra \(\left( \alpha \right) \equiv \left( {MNPQ} \right)\).

Ta có \(\left\{ \begin{array}{l}\left( {MNPQ} \right) \cap \left( {SAB} \right) = MN\\AB//\left( {MNPQ} \right)\end{array} \right. \Rightarrow MN//AB \Rightarrow \frac{{SM}}{{SA}} = \frac{{MN}}{{AB}} = \frac{2}{3}\).

Tương tự, ta có \(\frac{{NP}}{{BC}} = \frac{{PQ}}{{CD}} = \frac{{QM}}{{DA}} = \frac{2}{3}\)\(MNPQ\) là hình vuông.

Suy ra \({S_{MNPQ}} = {\left( {\frac{2}{3}} \right)^2}.{S_{ABCD}} = \frac{4}{9}.{S_{ABCD}} = \frac{4}{9}.10.10 = \frac{{400}}{9} \approx 44,4\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 9

Cho tứ diện \(ABCD\). Trên cạnh \( (ảnh 1)

Gọi \(I\) là giao điểm của đường thẳng \(MN\) và đường thẳng \(CD\).

Khi đó \(\left\{ \begin{array}{l}I \in MN\\I \in CD \subset \left( {BCD} \right)\end{array} \right.\)\( \Rightarrow MN \cap \left( {BCD} \right) = \left\{ I \right\}\).

Kẻ \(DE//AC\left( {E \in IM} \right)\).

Do \(DE//CM\) nên \(\frac{{ID}}{{IC}} = \frac{{ED}}{{MC}} \Rightarrow \frac{{ID}}{{IC}} = \frac{{ED}}{{2AM}}\) (1).

Do \(DE//AM\) nên \(\frac{{ED}}{{AM}} = \frac{{ND}}{{NA}} = \frac{1}{2}\) (2).

Từ (1) và (2) ta có \[\frac{{ID}}{{IC}} = \frac{1}{4}\]. Vậy \(a + 2b = 9\).

Lời giải

a) Đ, b) Đ, c) Đ, d) S

Cho hình chóp \(S.ABCD\) có đáy là (ảnh 1)

a) Ta có \(OM\not \subset \left( {SAB} \right)\)\(OM//SA \subset \left( {SAB} \right)\). Vậy \(OM//\left( {SAB} \right)\).

b) Ta có \(\left( {SAC} \right)\)\(\left( {SBD} \right)\) có S chung.

Lại có \(\left\{ \begin{array}{l}O \in AC \subset \left( {SAC} \right) \Rightarrow O \in \left( {SAC} \right)\\O \in BD \subset \left( {SBD} \right) \Rightarrow O \in \left( {SBD} \right)\end{array} \right. \Rightarrow O \in \left( {SAC} \right) \cap \left( {SBD} \right)\).

Vậy \(SO = \left( {SAC} \right) \cap \left( {SBD} \right)\).

c) Trong mặt phẳng \(\left( {SAC} \right)\): \(\left\{ I \right\} = AM \cap SO\)\(SO \subset \left( {SBD} \right)\).

Vậy \(AM \cap \left( {SBD} \right) = \left\{ I \right\}\).

d) Xét \(\Delta SAC\)\(AM,SO\) là hai đường trung tuyến nên \(I\) là trọng tâm \(\Delta SAC\).

Suy ra theo tính chất trọng tâm ta có \(AI = 2IM\).

Câu 3

A. Hàm số đồng biến trên \[\left( { - \frac{{3\pi }}{2}; - \frac{\pi }{2}} \right).\]                                             
B. Hàm số đồng biến trên \[\left( {\frac{\pi }{2};\frac{{3\pi }}{2}} \right).\]    
C. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};\frac{\pi }{2}} \right).\]                                             
D. Hàm số đồng biến trên \[\left( { - \frac{\pi }{2};0} \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP