Câu hỏi:

20/10/2025 125 Lưu

Tính giới hạn \(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - \sqrt[3]{{{x^3} + 1}}} \right)\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Trả lời: 0,5

\(\mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - \sqrt[3]{{{x^3} + 1}}} \right)\)\( = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - x - \sqrt[3]{{{x^3} + 1}} + x} \right)\)

\[ = \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt {{x^2} - x} - x} \right) - \mathop {\lim }\limits_{x \to + \infty } \left( {\sqrt[3]{{{x^3} + 1}} - x} \right)\]

\[ = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - x}}{{\sqrt {{x^2} - x} + x}} - \mathop {\lim }\limits_{x \to + \infty } \frac{1}{{\sqrt[3]{{{{\left( {{x^3} + 1} \right)}^2}}} + x\sqrt[3]{{{x^3} + 1}} + {x^2}}}\]

\[ = \mathop {\lim }\limits_{x \to + \infty } \frac{{ - 1}}{{\sqrt {1 - \frac{1}{x}} + 1}} - 0 = - 0,5\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Trả lời: 6

Cho hình chóp \(S.ABCD\) có đáy \(ABCD\ (ảnh 1)

Gọi \(M\) là trung điểm của \(BC\), \(F\) là giao điểm của \(AM\)\(CD\) trong mặt phẳng \(\left( {ABCD} \right)\).

Theo định lí Talet, ta có \(\frac{{MA}}{{MF}} = \frac{{MB}}{{MC}} = 1 \Rightarrow MA = MF \Rightarrow M\) là trung điểm của \(AF\).

Suy ra \(\frac{{AG}}{{AF}} = \frac{{AG}}{{2AM}} = \frac{1}{3}\).

Ta có \(\left\{ \begin{array}{l}GE \subset \left( {SAF} \right)\\GE//\left( {SCD} \right)\\\left( {SAF} \right) \cap \left( {SCD} \right) = SF\end{array} \right.\)\( \Rightarrow GE//SF \Rightarrow \frac{{AE}}{{AS}} = \frac{{AG}}{{AF}} = \frac{1}{3} \Rightarrow AE = \frac{1}{3}AS\).

Suy ra \(SE = \frac{2}{3}SA \Rightarrow \frac{m}{n} = \frac{2}{3} \Rightarrow m.n = 6\).

Lời giải

a) S, b) Đ, c) S, d) Đ

Cho hình chóp \(S.ABCD\) có đáy là (ảnh 1)

a) Ta có \(M \in SD\)\(SD\not \subset \left( {ABCD} \right)\) nên \(M \notin \left( {ABCD} \right)\).

b) Trong \(\left( {SBD} \right)\)\(SO \cap BM = G\)\(SO \subset \left( {SAC} \right)\) nên \(G = BM \cap \left( {SAC} \right),G \in SO\).

c) Xét \(\Delta SBD\)\(BM,SO\) là trung tuyến nên \(G\) là trọng tâm.

Do đó \(\frac{{SG}}{{GO}} = 2\).

d) Trong \(\left( {SCD} \right)\)\(MN \cap CD = K\)\(CD \subset \left( {ABCD} \right)\). Suy ra \(K = MN \cap \left( {ABCD} \right)\).

Trong mặt phẳng \(\left( {ABCD} \right)\), có \(AC\) không song song với \(BK\) nên \(AC\)\(BK\) cắt nhau.

Câu 6

A. 1.                         
B. 3.                         
C. 4.                                 
D. 2.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP