Câu hỏi:

20/10/2025 75 Lưu

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hai đường thẳng chéo nhau thì không có điểm chung.    
B. Hai đường thẳng không cắt nhau và không song song thì chéo nhau.   
C. Hai đường thẳng không có điểm chung thì song song với nhau.    
D. Hai đường thẳng không song song thì cắt nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Hai đường thẳng chéo nhau thì không có điểm chung là mệnh đề đúng. Chọn A.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Cỡ mẫu \(n = 7 + 12 + 5 + 7 + 3 + 5 + 1 = 40\).

Gọi \({x_1};{x_2};...;{x_{40}}\) là thời gian đi từ nhà đến trường của 40 học sinh lớp 11 được xếp theo thứ tự không giảm.

Ta có \({Q_1} = \frac{{{x_{10}} + {x_{11}}}}{2}\) mà \({x_{10}};{x_{11}} \in \left[ {20;25} \right)\) nên nhóm này chứa tứ phân vị thứ nhất.

Ta có \({Q_1} = 20 + \frac{{\frac{{40}}{4} - 7}}{{12}}.5 \approx 21,3\).

Trả lời: 21,3.

Lời giải

Cho hình chóp tứ giác \(S.ABCD\)có đáy \(ABC (ảnh 1)

Trong mặt phẳng \(\left( {ABCD} \right)\)\(I = MN \cap AB\).

Trong mặt phẳng \(\left( {SAB} \right)\)\(Q = IP \cap SB\)\(IP \subset \left( {MNP} \right)\). Do đó \(Q = SB \cap \left( {MNP} \right)\).

\(IB//CN\) nên \(\frac{{IB}}{{CN}} = \frac{{MB}}{{MC}} = 1\) \( \Rightarrow \frac{{IB}}{{IA}} = \frac{1}{3}\).

Áp dụng định lí Menelaus cho \(\Delta SAB\)\(\frac{{SP}}{{PA}}.\frac{{AI}}{{IB}}.\frac{{BQ}}{{QS}} = 1\)\( \Leftrightarrow 1.3.\frac{{BQ}}{{QS}} = 1\)\( \Rightarrow \frac{{BQ}}{{QS}} = \frac{1}{3}\).

Câu 5

A. \(15\).                      
B. \(17\).                      
C. \(4\).                                                                     
D. \(13\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \({u_n} = {u_1}{q^{n + 1}}\).                   
B. \({u_n} = {u_1}{q^{n - 1}}\).         
C. \({u_n} = {u_1} + \left( {n - 1} \right)q\).                                                           
D. \({u_n} = {u_1}{q^n}\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP