Câu hỏi:

24/10/2025 30 Lưu

Cho hai biến cố \[A\] và \[B\]. Biết \[P\left( B \right) = 0,01\]; \[P\left( {A|B} \right) = 0,7\]; \[P\left( {A|\overline B } \right) = 0,09\]. Khi đó \[P\left( A \right)\] bằng

\(0,0079\).

\(0,0961\).

\(0,0916\).

\(0,0970\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn đáp án B

Ta có: \[P\left( B \right) = 0,01 \Rightarrow P\left( {\overline B } \right) = 1 - 0,01 = 0,99\].

Theo công thức xác suất toàn phần, ta có:

\[P\left( A \right) = P\left( B \right)P\left( {A|B} \right) + P\left( {\overline B } \right)P\left( {A|\overline B } \right) = 0,01.0,7 + 0,99.0,09 = 0,0961\].

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).

b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).

c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).

Theo công thức xác suất toàn phần ta có

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).

d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).