Câu hỏi:

24/10/2025 58 Lưu

Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng.

a) Xác suất để gọi một bạn tên Hiền là \(\frac{1}{{10}}\).

b) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó giới tính nữ là \(\frac{3}{{17}}\).

c) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó giới tính nam là \(\frac{2}{{13}}\).

d) Nếu thầy giáo gọi một bạn tên Hiền lên bảng thì xác suất để bạn đó mang giới tính nữ là \(\frac{3}{{17}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(A\) là biến cố “Học sinh được gọi lên bảng tên là Hiền”.

Gọi \(B\) là biến cố “Học sinh được chọn mang giới tính nữ”.

a) Đúng. Xác suất để học sinh được gọi có tên là Hiền là: \(P\left( A \right) = \frac{3}{{30}} = \frac{1}{{10}}\).

b) Sai. Xác suất để thầy giáo gọi bạn đó lên bảng có tên Hiền, nhưng với điều kiện bạn đó nữ là \[P\left( {A\mid B} \right)\].

Ta có: \(P\left( B \right) = \frac{{17}}{{30}},\,\,P\left( {A \cap B} \right) = \frac{1}{{30}}\). Do đó: \(P\left( {A\mid B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{30}}}}{{\frac{{17}}{{30}}}} = \frac{1}{{17}}\).

c) Đúng. Gọi \(C\) là biến cố “Học sinh được chọn mang giới tính nam”.

Xác suất thầy giáo gọi bạn đó lên bảng có tên Hiền, với điều kiện bạn đó nam là \(P\left( {A\mid C} \right)\).

Ta có: \(P\left( C \right) = \frac{{13}}{{30}},\,\,P\left( {A \cap C} \right) = \frac{2}{{30}}\) do đó: \(P\left( {A\mid C} \right) = \frac{{P\left( {A \cap C} \right)}}{{P\left( C \right)}} = \frac{{\frac{2}{{30}}}}{{\frac{{13}}{{30}}}} = \frac{2}{{13}}\).

d) Sai. Nếu thầy giáo gọi 1 bạn có tên là Hiền lên bảng thì xác suất để bạn đó là bạn nữ là \(P\left( {B\mid A} \right)\).

Ta có: \(P\left( {B\mid A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{{30}}}}{{\frac{3}{{30}}}} = \frac{1}{3}\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).

b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).

c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).

Theo công thức xác suất toàn phần ta có

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).

d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).

Lời giải

Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].

Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:

Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).

Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).

Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).

Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).

Theo công thức xác suất toàn phần, ta có

\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).

Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].