Lớp 12A có 30 học sinh, trong đó có 17 bạn nữ còn lại là nam. Có 3 bạn tên Hiền, trong đó có 1 bạn nữ và 2 bạn nam. Thầy giáo gọi ngẫu nhiên 1 bạn lên bảng.
a) Xác suất để gọi một bạn tên Hiền là \(\frac{1}{{10}}\).
b) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó giới tính nữ là \(\frac{3}{{17}}\).
c) Xác suất để có tên Hiền, nhưng với điều kiện bạn đó giới tính nam là \(\frac{2}{{13}}\).
d) Nếu thầy giáo gọi một bạn tên Hiền lên bảng thì xác suất để bạn đó mang giới tính nữ là \(\frac{3}{{17}}\).
Quảng cáo
Trả lời:
Gọi \(A\) là biến cố “Học sinh được gọi lên bảng tên là Hiền”.
Gọi \(B\) là biến cố “Học sinh được chọn mang giới tính nữ”.
a) Đúng. Xác suất để học sinh được gọi có tên là Hiền là: \(P\left( A \right) = \frac{3}{{30}} = \frac{1}{{10}}\).
b) Sai. Xác suất để thầy giáo gọi bạn đó lên bảng có tên Hiền, nhưng với điều kiện bạn đó nữ là \[P\left( {A\mid B} \right)\].
Ta có: \(P\left( B \right) = \frac{{17}}{{30}},\,\,P\left( {A \cap B} \right) = \frac{1}{{30}}\). Do đó: \(P\left( {A\mid B} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( B \right)}} = \frac{{\frac{1}{{30}}}}{{\frac{{17}}{{30}}}} = \frac{1}{{17}}\).
c) Đúng. Gọi \(C\) là biến cố “Học sinh được chọn mang giới tính nam”.
Xác suất thầy giáo gọi bạn đó lên bảng có tên Hiền, với điều kiện bạn đó nam là \(P\left( {A\mid C} \right)\).
Ta có: \(P\left( C \right) = \frac{{13}}{{30}},\,\,P\left( {A \cap C} \right) = \frac{2}{{30}}\) do đó: \(P\left( {A\mid C} \right) = \frac{{P\left( {A \cap C} \right)}}{{P\left( C \right)}} = \frac{{\frac{2}{{30}}}}{{\frac{{13}}{{30}}}} = \frac{2}{{13}}\).
d) Sai. Nếu thầy giáo gọi 1 bạn có tên là Hiền lên bảng thì xác suất để bạn đó là bạn nữ là \(P\left( {B\mid A} \right)\).
Ta có: \(P\left( {B\mid A} \right) = \frac{{P\left( {A \cap B} \right)}}{{P\left( A \right)}} = \frac{{\frac{1}{{30}}}}{{\frac{3}{{30}}}} = \frac{1}{3}\).
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(3\).
\(2\)
\(4\).
\(1\).
Lời giải
Chọn đáp án A
Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).
Vậy \(n\left( A \right) = 3\).
Lời giải
a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).
b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).
c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.
Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).
Theo công thức xác suất toàn phần ta có
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).
d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.