Một kho hàng có 1000 thùng hàng với bề ngoài giống hệt nhau, trong đó có 480 thùng hàng loại I và 520 thùng hàng loại II. Trong số các thùng hàng đó, có \(80\% \) thùng hàng loại I và \(85\% \) thùng hàng loại II đã được kiểm định. Chọn ngẫu nhiên một thùng hàng trong kho.
a) Xác suất chọn được thùng hàng loại I bằng \(48\% \).
b) Xác suất chọn được thùng hàng loại II đã được kiểm định bằng 38,4%.
c) Xác suất chọn được thùng hàng chưa kiểm định bằng 17,4%.
d) Giả sử thùng hàng được lấy ra là thùng hàng chưa được kiểm định, xác suất thùng hàng đó là thùng loại I thấp hơn xác suất thùng hàng đó là thùng loại II.
Quảng cáo
Trả lời:
Xét phép thử chọn ngẫu nhiên một thùng hàng trong kho.
Gọi \(A\) là biến cố: “Chọn được thùng hàng loại I”.
\(B\) là biến cố: “Chọn được thùng hàng đã được kiểm định”.
Theo bài ra ta có \[P\left( {B\left| A \right.} \right) = 80\% ,\,\,P\left( {B\left| {\overline A } \right.} \right) = 85\% \].
a) Đúng. Xác suất chọn được thùng hàng loại I là \(P\left( A \right) = \frac{{480}}{{1000}} = 48\% \).
b) Sai. Ta có \(P\left( {\overline A } \right) = \frac{{520}}{{1000}} = 52\% \), \[P\left( {B\left| {\overline A } \right.} \right) = 85\% \].
Xác suất chọn được thùng hàng loại II đã được kiểm định là
\(P\left( {\overline A \cap B} \right) = P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right) = 52\% .85\% = 44,2\% \).
c) Đúng. Xác suất chọn được thùng hàng đã được kiểm định là
\(P\left( B \right) = P\left( A \right).P\left( {B\left| A \right.} \right) + P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right) = 48\% .80\% + 52\% .85\% = 82,6\% \).
Suy ra xác suất chọn được thùng hàng chưa kiểm định là \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 17,4\% \).
d) Sai. Giả sử thùng hàng được lấy ra là thùng hàng chưa được kiểm định.
Xác suất thùng hàng đó là thùng loại I là \(P\left( {A\left| {\overline B } \right.} \right) = \frac{{P\left( A \right).P\left( {\overline B \left| A \right.} \right)}}{{P\left( {\overline B } \right)}} = \frac{{48\% .\left( {1 - 80\% } \right)}}{{17,4\% }} = \frac{{16}}{{29}}\).
Xác suất thùng hàng đó là thùng loại II là \(P\left( {\overline A \left| {\overline B } \right.} \right) = \frac{{P\left( {\overline A } \right).P\left( {\overline B \left| A \right.} \right)}}{{P\left( {\overline B } \right)}} = \frac{{52\% .\left( {1 - 85\% } \right)}}{{17,4\% }} = \frac{{13}}{{29}}\).
Vây xác suất thùng hàng đó là thùng loại I cao hơn xác suất thùng hàng đó là thùng loại II.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
\(3\).
\(2\)
\(4\).
\(1\).
Lời giải
Chọn đáp án A
Tập hợp các kết quả thuận lợi cho biến cố \(A\)là \(\left\{ {\left( {3;1} \right),\left( {3;2} \right),\left( {3;4} \right)} \right\}\).
Vậy \(n\left( A \right) = 3\).
Lời giải
a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).
b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).
c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.
Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).
Theo công thức xác suất toàn phần ta có
\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).
d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.