Câu hỏi:

24/10/2025 111 Lưu

Một kho hàng có 1000 thùng hàng với bề ngoài giống hệt nhau, trong đó có 480 thùng hàng loại I và 520 thùng hàng loại II. Trong số các thùng hàng đó, có \(80\% \) thùng hàng loại I và \(85\% \) thùng hàng loại II đã được kiểm định. Chọn ngẫu nhiên một thùng hàng trong kho.

a) Xác suất chọn được thùng hàng loại I bằng \(48\% \).

b) Xác suất chọn được thùng hàng loại II đã được kiểm định bằng 38,4%.

c) Xác suất chọn được thùng hàng chưa kiểm định bằng 17,4%.

d) Giả sử thùng hàng được lấy ra là thùng hàng chưa được kiểm định, xác suất thùng hàng đó là thùng loại I thấp hơn xác suất thùng hàng đó là thùng loại II.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét phép thử chọn ngẫu nhiên một thùng hàng trong kho.

Gọi \(A\) là biến cố: “Chọn được thùng hàng loại I”.

\(B\) là biến cố: “Chọn được thùng hàng đã được kiểm định”.

Theo bài ra ta có \[P\left( {B\left| A \right.} \right) = 80\% ,\,\,P\left( {B\left| {\overline A } \right.} \right) = 85\% \].

a) Đúng. Xác suất chọn được thùng hàng loại I là \(P\left( A \right) = \frac{{480}}{{1000}} = 48\% \).

b) Sai. Ta có \(P\left( {\overline A } \right) = \frac{{520}}{{1000}} = 52\% \), \[P\left( {B\left| {\overline A } \right.} \right) = 85\% \].

Xác suất chọn được thùng hàng loại II đã được kiểm định là

\(P\left( {\overline A  \cap B} \right) = P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right) = 52\% .85\%  = 44,2\% \).

c) Đúng. Xác suất chọn được thùng hàng đã được kiểm định là

\(P\left( B \right) = P\left( A \right).P\left( {B\left| A \right.} \right) + P\left( {\overline A } \right).P\left( {B\left| {\overline A } \right.} \right) = 48\% .80\%  + 52\% .85\%  = 82,6\% \).

Suy ra xác suất chọn được thùng hàng chưa kiểm định là \(P\left( {\overline B } \right) = 1 - P\left( B \right) = 17,4\% \).

d) Sai. Giả sử thùng hàng được lấy ra là thùng hàng chưa được kiểm định.

Xác suất thùng hàng đó là thùng loại I là \(P\left( {A\left| {\overline B } \right.} \right) = \frac{{P\left( A \right).P\left( {\overline B \left| A \right.} \right)}}{{P\left( {\overline B } \right)}} = \frac{{48\% .\left( {1 - 80\% } \right)}}{{17,4\% }} = \frac{{16}}{{29}}\).

Xác suất thùng hàng đó là thùng loại II là \(P\left( {\overline A \left| {\overline B } \right.} \right) = \frac{{P\left( {\overline A } \right).P\left( {\overline B \left| A \right.} \right)}}{{P\left( {\overline B } \right)}} = \frac{{52\% .\left( {1 - 85\% } \right)}}{{17,4\% }} = \frac{{13}}{{29}}\).

Vây xác suất thùng hàng đó là thùng loại I cao hơn xác suất thùng hàng đó là thùng loại II.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).

b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).

c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).

Theo công thức xác suất toàn phần ta có

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).

d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).

Lời giải

Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].

Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:

Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).

Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).

Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).

Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).

Theo công thức xác suất toàn phần, ta có

\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).

Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].