Câu hỏi:

24/10/2025 35 Lưu

Một công ty du lịch bố trí chỗ nghỉ cho đoàn khách tại ba khách sạn \[A,\,B,\,C\] theo tỉ lệ \[20\]%, \[50\]%, \[30\]%. Tỉ lệ hỏng điều hòa ở ba khách sạn lần lượt là \[5\]%, \[4\]%, \[8\]%. Tính xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng (kết quả để dưới dạng số thập phân và làm tròn đến hàng phần trăm).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi biến cố \[H\]: “Khách nghỉ ở phòng có điều hòa bị hỏng”;

\(A\): “Khách nghỉ tại khách sạn \[A\]”;

\(B\): “Khách nghỉ tại khách sạn \[B\]”;

\(C\): “Khách nghỉ tại khách sạn \[C\]”.

Theo bài ra ta có: \(P\left( A \right) = 0,2\); \(P\left( B \right) = 0,5\); \(P\left( C \right) = 0,3\).

\(P\left( {H|A} \right) = 0,05\); \(P\left( {H|B} \right) = 0,04\); \(P\left( {H|C} \right) = 0,08\).

Áp dụng công thức xác suất toàn phần, ta có:

\[P\left( H \right)\, = \,P\left( A \right).P\left( {H|A} \right)\, + \,P\left( B \right).P\left( {H|B} \right)\, + \,P\left( C \right).P\left( {H|C} \right)\,\,\]

\[ = \,0,2.\,0,05\, + \,0,5.0,04\, + \,0,3.0,08\]\[ = \,0,054\].

Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \(A\), biết khách đó ở phòng điều hòa bị hỏng là: \[P\left( {A|H} \right)\, = \,\frac{{P\left( A \right).P\left( {H|A} \right)}}{{P\left( H \right)}}\, = \,\frac{{0,2.0,05}}{{0,054}}\, = \,\frac{5}{{27}}\, \approx \,0,19\].

Áp dụng công thức Bayes, xác suất để một khách ở khách sạn \[C\], biết khách đó ở phòng điều hòa không bị hỏng là:

\[P\left( {C|\overline H } \right)\, = \,\frac{{P\left( C \right).P\left( {\overline H |C} \right)}}{{P\left( {\overline H } \right)}}\, = \,\frac{{0,3.\left( {1 - \,0,08} \right)}}{{1 - 0,054}}\, = \,\frac{{138}}{{473}}\, \approx \,0,29\].

Đáp án: 0,29.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Sai. Xác suất để vận động viên chọn ra thuộc đội I là \(\frac{8}{{18}} = \frac{4}{9}\).

b) Đúng. Xác suất không đạt huy chương vàng của mỗi vận động viên đội II là \(1 - 0,55 = 0,45\).

c) Đúng. Gọi \(A\) là biến cố: “Vận động viên đạt huy chương vàng”, \(B\) là biến cố: “Thành viên đội I” thì biến cố đối của \(B\) là \(\overline B \): “Thành viên đội II đạt huy chương vàng”.

Do đó, \(P\left( B \right) = \frac{8}{{18}} = \frac{4}{9};\,P\left( {\overline B } \right) = \frac{5}{9}\) ; \(P\left( {A|B} \right) = 0,6;P\left( {A|\overline B } \right) = 0,55\).

Theo công thức xác suất toàn phần ta có

\(P\left( A \right) = P\left( B \right).P\left( {A|B} \right) + P\left( {\overline B } \right).P\left( {A|\overline B } \right) = \frac{4}{9}.0,6 + \frac{5}{9}.0,55 = \frac{{103}}{{180}}\).

d) Đúng. Ta có \(P\left( {B|A} \right) = \frac{{P\left( B \right).P\left( {A|B} \right)}}{{P\left( A \right)}} = \frac{{\frac{4}{9}.0,6}}{{\frac{{103}}{{180}}}} = \frac{{48}}{{103}}\).

Lời giải

Gọi biến cố \[{B_k}\]: “lấy ra được \(k\) viên bi trắng từ hộp thứ nhất”, trong đó \[k \in \left\{ {0;1;2;3} \right\}\].

Biến cố \(A\): “lấy được viên bi trắng từ hộp thứ hai”. Khi đó:

Xác suất lấy ra được \(0\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_0}} \right) = \frac{{C_5^3}}{{C_9^3}} = \frac{5}{{42}}\).

Xác suất lấy ra được \(1\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_1}} \right) = \frac{{C_4^1C_5^2}}{{C_9^3}} = \frac{{10}}{{21}}\).

Xác suất lấy ra được \(2\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^2C_5^1}}{{C_9^3}} = \frac{5}{{14}}\).

Xác suất lấy ra được \(3\) viên bi trắng từ hộp thứ nhất là \(P\left( {{B_2}} \right) = \frac{{C_4^3}}{{C_9^3}} = \frac{1}{{21}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(0\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_0}} \right) = \frac{5}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(1\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_1}} \right) = \frac{6}{{12}} = \frac{1}{2}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(2\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_2}} \right) = \frac{7}{{12}}\).

Xác suất lấy được 1 bi trắng từ hộp thứ hai với điều kiện lấy được \(3\) bi trắng từ hộp thứ nhất là

\(P\left( {A|{B_3}} \right) = \frac{8}{{12}} = \frac{2}{3}\).

Theo công thức xác suất toàn phần, ta có

\(P\left( A \right) = P\left( {{B_0}} \right).P\left( {A|{B_0}} \right) + P\left( {{B_1}} \right).P\left( {A|{B_1}} \right) + P\left( {{B_2}} \right).P\left( {A|{B_2}} \right) + P\left( {{B_3}} \right).P\left( {A|{B_3}} \right) = \frac{{19}}{{36}}\).

Vậy xác suất để lấy được bi trắng từ hộp thứ hai theo đề bài trên là \[\frac{{19}}{{36}}\].