Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình: \(\sqrt {2{x^2} + x - 6} = x + 2\).
a) Điều kiện của phương trình là \(x \ge 2.\)
b) Bình phương hai vế của phương trình ta được là \({x^2} - 3x - 10 = 0.\)
c) Phương trình có hai nghiệm.
d) Tổng bình phương các nghiệm của phương trình bằng \(20\).
Phần 2. Trắc nghiệm đúng sai
Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.
Cho phương trình: \(\sqrt {2{x^2} + x - 6} = x + 2\).
a) Điều kiện của phương trình là \(x \ge 2.\)
b) Bình phương hai vế của phương trình ta được là \({x^2} - 3x - 10 = 0.\)
c) Phương trình có hai nghiệm.
d) Tổng bình phương các nghiệm của phương trình bằng \(20\).
Quảng cáo
Trả lời:
a) Sai. Điều kiện của phương trình là \(x + 2 \ge 0\) nên \(x \ge - 2.\)
b) Đúng. Bình phương hai vế ta được: \(2{x^2} + x - 6 = {x^2} + 4x + 4\)
\(2{x^2} - {x^2} + x - 4x - 6 - 4 = 0\)
\({x^2} - 3x - 10 = 0.\)
c) Đúng. Ta có \({x^2} - 3x - 10 = 0\)
\({x^2} - 5x + 2x - 10 = 0\)
\(x\left( {x - 5} \right) + 2\left( {x - 5} \right) = 0\)
\(\left( {x - 5} \right)\left( {x + 2} \right) = 0\)
\(x - 5 = 0\) hoặc \(x + 2 = 0\)
\(x = 5\) (TMĐK) hoặc \(x = - 2\) (TMĐK)
Vậy phương trình có hai nghiệm \(x = 5\,;\,\,x = - 2.\)
d) Sai. Tổng bình phương của hai nghiệm là \({5^2} + {\left( { - 2} \right)^2} = 25 + 4 = 29.\)
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Thay \(x = 180\) vào công thức \(h = 0,4\sqrt[3]{x}\), ta được:
\(h = 0,4 \cdot \sqrt[3]{{180}} \approx 2,26\;\,({\rm{m)}}{\rm{.}}\)
Vậy chiều cao của hươu cao cổ là \(2,26\;\,{\rm{m}}\).
Đáp án: 2,26.
Câu 2
Lời giải
Chọn A
Với \(a = \sqrt 2 \), ta có: \(\sqrt {{{\left( {\sqrt 2 - \sqrt 3 } \right)}^2}} + \sqrt 2 \)
\( = \left| {\sqrt 2 - \sqrt 3 } \right| + \sqrt 2 \)
\( = \sqrt 3 - \sqrt 2 + \sqrt 2 \)\( = \sqrt 3 \).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.