Cho tam giác \[ABC\]có \(AB = 16\,;\,\,AB = 14\) và \(\widehat B = 60^\circ \). Độ dài cạnh \(BC\) là
Câu hỏi trong đề: Bài tập ôn tập Toán 9 Cánh diều Chương 4 có đáp án !!
Quảng cáo
Trả lời:
Chọn A
![Cho tam giác \[ABC\]có \(AB = 16\,;\,\,AB = 14\) và \(\widehat B = 60^\circ \). Độ dài cạnh \(BC\) là A. \(BC = 10\). B. \(BC = 11\). C. \(BC = 9\). D. \(BC = 12\). (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/14-1761181882.png)
Kẻ đường cao \(AH\).
Xét tam giác vuông \(ABH\), ta có: \(BH = AB.\cos B = AB.\cos 60^\circ = 16.\frac{1}{2} = 8\)
\(AH = AB.\sin B = AB.\sin 60^\circ = 16.\frac{{\sqrt 3 }}{2} = 8\sqrt 3 \).
Áp dụng định lý Pythagore vào tam giác \(AHC\) vuông \(H,\) ta có:
\(H{C^2} = A{C^2} - A{H^2} = {14^2} - {\left( {8\sqrt 3 } \right)^2} = 196 - 192 = 4\).
Suy ra \(HC = 2\).
Vậy \(BC = CH + HB = 2 + 8 = 10\).
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn C

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.
Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].
Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.
Suy ra \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].
Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN \cdot \tan M.\]
Ta có:\[AH = AN + NH\]suy ra \[AH = MN \cdot \tan M + NH\].
Do đó \[AH = 13,65 \cdot \tan 58^\circ + 1,55 \approx 23,39\,\,({\rm{m}}).\]
Vậy chiều cao của tháp khoảng \[23,39\,\,{\rm{m}}\].
Câu 2
Lời giải
Chọn C
Gọi \(A,\,\,D\) là vị trí của người đứng;
\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;
\[H\] là hình chiếu của \[A\] lên \[BC.\]

Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);
\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]
Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:
\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).
Suy ra \(AB = \sqrt {3,69} = 1,92\;\,({\rm{m}}).\)
Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:
\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).
Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.



![Chọn D Ta có, góc tạo bởi cạnh \[AB\] và phương năm ngang trên mặt đất là \[\widehat {ABH}\]. Xét tam giác \[ABH\] vuôn (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/8-1761181578.png)
