Câu hỏi:

23/10/2025 67 Lưu

Để lắp đường điện cao thế từ vị trí \[A\] đến vị trí \[B\] cách nhau \[2\,\,000{\rm{ m}},\] do phải tránh ngọn núi nên người ta nối đường dây từ vị trí \[A\] đến vị trí \[C,\] rồi nối từ vị trí \[C\] đến vị trí \[B.\] Góc tạo bởi hai đoạn dây \[CA\] và \[CB\] là \(90^\circ \) và góc tạo bởi đoạn dây \[AC\] và đường \[AB\] là \(60^\circ \).

a) Độ dài \[AC\] đường dây (ảnh 1)

a) Độ dài \[AC\] đường dây điện nối từ \[A\] đến \[C\] là \(1\,\,000\;\,{\rm{m}}{\rm{.}}\)

b) Độ dài \[AB\] đường dây điện nối từ \[A\] đến \[B\] là \(1\,\,624\;\,{\rm{m}}{\rm{.}}\)

c) Tổng độ dài đường dây điện nối từ \[A\] đến \[C\] rồi nối tiếp đến \[B\] là \(2\,\,732\,\;\,{\rm{m}}{\rm{.}}\)

d) Chiều dài tăng thêm của đường dây điện là \(735\;{\rm{m}}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Đúng. Xét \(\Delta ABC\) vuông tại \(C\), ta có:

\[\cos A = \frac{{AC}}{{AB}}\] hay \[\cos 60^\circ  = \frac{{AC}}{{AB}}\] nên \[\frac{1}{2} = \frac{{AC}}{{2000}}\], suy ra \[AC = \frac{{2\,\,000}}{2} = 1\,\,000\;\,\,({\rm{m}})\].

b) Sai. Xét \(\Delta ABC\) vuông tại \(C\), ta có:

\(\sin A = \frac{{BC}}{{AB}}\) hay \(\sin 60^\circ  = \frac{{BC}}{{AB}}\) nên \(\frac{{\sqrt 3 }}{2} = \frac{{BC}}{{2\,\,000}}\), suy ra \(AB = \frac{{2\,\,000\sqrt 3 }}{2} = 1\,\,732\;\,\,({\rm{m}})\).

c) Đúng. Tổng độ dài đường dây điện nối từ \[A\] đến \[C\] rồi nối tiếp đến \[B\] là:

\(AC + BC = 1\,\,000 + 1\,\,732 = 2732\,\,({\rm{m}}).\)

d) Sai. Chiều dài tăng thêm của đường dây điện là: \(2\,\,732 - 2\,\,000 = 732\,\,({\rm{m}})\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[23,38\,\,{\rm{m}}\].                           
B. \[21,84\,\,{\rm{m}}\].                                
C. \[23,39\,\,{\rm{m}}\].                                
D. \[21,85\,\,{\rm{m}}\].

Lời giải

Chọn C

Gắn dữ kiện của bài toán vào m (ảnh 2)

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.

Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].

Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.

Suy ra \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].

Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN \cdot \tan M.\]

Ta có:\[AH = AN + NH\]suy ra \[AH = MN \cdot \tan M + NH\].

Do đó \[AH = 13,65 \cdot \tan 58^\circ  + 1,55 \approx 23,39\,\,({\rm{m}}).\]

Vậy chiều cao của tháp khoảng \[23,39\,\,{\rm{m}}\].

Lời giải

Chọn C

Gọi \(A,\,\,D\) là vị trí của người đứng;

\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;

\[H\] là hình chiếu của \[A\] lên \[BC.\]

Vậy chiều cao của bức tư (ảnh 2)

Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);

\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]

Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:

\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).

Suy ra \(AB = \sqrt {3,69}  = 1,92\;\,({\rm{m}}).\)

Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:

\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).

Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]

Câu 4

A. \(10,06\,\,{\mathop{\rm m}\nolimits} .\)                               
B. \(10,069\,\,{\mathop{\rm m}\nolimits} .\)         
C. \(10,07\,\,{\mathop{\rm m}\nolimits} .\)         
D. \(10,7\,\,{\mathop{\rm m}\nolimits} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP