Câu hỏi:

23/10/2025 29 Lưu

Dạng 3. Trắc nghiệm trả lời ngắn

Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Một con đê được đắp chắn sóng theo hình dưới, biết \(\widehat {ABE} = 50^\circ ,\,\,\widehat {DCF} = 30^\circ \), độ dốc của con đê phía biển dài \(AB = 8\,\;{\rm{m}}{\rm{.}}\) Hỏi độ dốc còn lại \[CD\] của con đê dài bao nhiêu mét? (kết quả làm tròn đến chữ số thập phân thứ nhất).
Một con đê được đắp chắn sóng theo hình dưới, biết \(\w (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Xét \(\Delta ABE\) vuông tại \(E\), ta có:

\(\sin B = \frac{{AE}}{{AB}}\) hay \(\sin 50^\circ  = \frac{{AE}}{8}\) nên \(AE = 8\sin 50^\circ  = 6,1\;\,({\rm{m)}}\).

Vì tứ giác \[ADFE\] là hình chữ nhật nên \(DF = AE = 6,1\;\,{\rm{m}}\).

Xét \(\Delta DFC\) vuông tại \(F\), ta có:

\(\sin C = \frac{{DF}}{{DC}}\) hay \(\sin 30^\circ  = \frac{{6,1}}{{DC}}\) nên \(DC = \frac{{6,1}}{{\sin 30^\circ }} = 12,2\,\,({\rm{m}})\).

Vậy \[DC = 12,2\,\;{\rm{m}}\].

Đáp án: 12,2.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Câu 1

A. \[23,38\,\,{\rm{m}}\].                           
B. \[21,84\,\,{\rm{m}}\].                                
C. \[23,39\,\,{\rm{m}}\].                                
D. \[21,85\,\,{\rm{m}}\].

Lời giải

Chọn C

Gắn dữ kiện của bài toán vào m (ảnh 2)

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.

Gọi \[N\] là hình chiếu của \[M\] lên đoạn \[AH\].

Vì \[MN\] và \[BH\] là các đoạn thẳng nằm trên phương ngang; \[MB\] và \[NH\] nằm trên phương thẳng đứng nên tứ giác \[MBHN\] là hình chữ nhật.

Suy ra \[NH = MB = 1,55\,\,{\rm{m}}\]; \[MN = BH = 13,65\,\,{\rm{m}}\].

Tam giác \[ANM\] vuông tại \[N\] nên \[AN = MN \cdot \tan M.\]

Ta có:\[AH = AN + NH\]suy ra \[AH = MN \cdot \tan M + NH\].

Do đó \[AH = 13,65 \cdot \tan 58^\circ  + 1,55 \approx 23,39\,\,({\rm{m}}).\]

Vậy chiều cao của tháp khoảng \[23,39\,\,{\rm{m}}\].

Lời giải

Chọn C

Gọi \(A,\,\,D\) là vị trí của người đứng;

\(C,\,\,D\) là vị trí bức tường phía trên và dưới cùng;

\[H\] là hình chiếu của \[A\] lên \[BC.\]

Vậy chiều cao của bức tư (ảnh 2)

Tứ giác \[ADBH\] là hình chữ nhật nên \(BD = AH = 1,5\;\,{\rm{m}}\);

\[BH = AD = 1,2\;\,{\rm{m}}{\rm{.}}\]

Áp dụng định lí Pythagore vào tam giác \(ABD\) vuông tại \(D,\) ta có:

\(A{B^2} = A{D^2} + B{D^2} = 1,{2^2} + 1,{5^2} = 3,69\).

Suy ra \(AB = \sqrt {3,69}  = 1,92\;\,({\rm{m}}).\)

Xét \(\Delta ABC\) vuông tại \[A,\] đường cao \[AH,\] ta có:

\(A{B^2} = BH \cdot BC\) hay \(BC = \frac{{A{B^2}}}{{BH}} = \frac{{3,69}}{{1,2}} \approx 3\;\,\,({\rm{m}})\).

Vậy chiều cao của bức tường là \[3{\rm{ m}}.\]

Câu 3

A. \(10,06\,\,{\mathop{\rm m}\nolimits} .\)                               
B. \(10,069\,\,{\mathop{\rm m}\nolimits} .\)         
C. \(10,07\,\,{\mathop{\rm m}\nolimits} .\)         
D. \(10,7\,\,{\mathop{\rm m}\nolimits} .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP