Câu hỏi:

23/10/2025 29 Lưu

(1,5 điểm) Cho parabol \(\left( P \right):y = - \frac{1}{2}{x^2}.\)

a) Vẽ đồ thị \(\left( P \right)\) trên hệ trục tọa độ.

b) Tìm tọa độ các điểm \(M\) giao điểm \(\left( P \right)\) (khác gốc tọa độ) có hoành độ bằng tung độ.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a) Ta có bảng giá trị sau:

\(x\)

\( - 2\)

\( - 1\)

0

1

2

\(y = - \frac{1}{2}{x^2}\)

\( - 2\)

\( - 0,5\)

0

\( - 0,5\)

\( - 2\)

Đồ thị hàm số là đường cong parabol đi qua các điểm \(O\left( {0\,;\,\,0} \right);\,\,A\left( { - 2\,;\,\, - 2} \right);\,\,B\left( { - 1\,;\,\, - 0,5} \right);\,\,\)\(C\left( {1\,;\,\, - 0,5} \right);\,\,\)\(D\left( {2\,;\,\, - 2} \right).\)

Hệ số \(a = \frac{1}{2} < 0\) nên parabol có bề lõm hướng xuống. Đồ thị hàm số nhận \(Oy\) làm trục đối xứng.

Ta vẽ được đồ thị hàm số \(\left( P \right):y = - \frac{1}{2}{x^2}\) như sau:

Cho parabol (P): y =  - 1/2 x^2.  a) Vẽ đồ thị (P) trên hệ trục tọa độ (ảnh 1)

b) Gọi \(M\left( {{x_M};\,\,{y_M}} \right)\) là một điểm thuộc \(\left( P \right).\)

Vì \(M\) có hoành độ bằng tung độ nên:

\({x_M} = - \frac{1}{2}x_M^2\)

\(2{x_M} + x_M^2 = 0\)

\({x_M}\left( {2 + {x_M}} \right) = 0\)

Có hai giá trị thỏa mãn là \({x_M} = 0\) (loại vì điểm cần tìm khác gốc tọa độ); \({x_M} = - 2.\)

Vậy điểm thuộc \(\left( P \right)\) có hoành độ bằng tung độ là \(\left( { - 2\,;\,\, - 2} \right).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Gọi \(x\,\,{\rm{(m}}\,{\rm{/}}\,{\rm{s)}}\) là tốc độ trượt ván của Bình và \(y\) (giây) là thời gian cuộc đua đã diễn ra \(\left( {x > 0\,;\,\,y > 0} \right).\)

Vì tốc độ trượt ván của An gấp 3 lần tốc độ trượt ván của Bình nên tốc độ trượt ván của An là \(3x\,\,{\rm{(m}}\,{\rm{/}}\,{\rm{s)}}{\rm{.}}\)

Vì tốc độ trượt ván của Bình gấp 3 lần tốc độ chạy bộ của An nên An chạy bộ với tốc độ là \(\frac{x}{3}\,\,{\rm{(m}}\,{\rm{/}}\,{\rm{s)}}{\rm{.}}\)

Thời gian An chạy bộ là \(y - 180\) (giây).

Quãng đường mà An trượt ván và chạy là \(3x \cdot 180 + \frac{x}{3} \cdot \left( {y - 180} \right)\,\,\left( {\rm{m}} \right).\)

Quãng đường mà Bình trượt ván là \(xy\,\,\left( {\rm{m}} \right).\)

Vì quãng đường của An và Bình đi là như nhau nên ta có phương trình:

\(3x \cdot 180 + \frac{x}{3} \cdot \left( {y - 180} \right) = xy\)

\(540x + \frac{{xy}}{3} - 60x = xy\)

\(480x = \frac{2}{3}xy\)

\(\frac{2}{3}x = 480\) (do \(x \ne 0)\)

\(y = 720\) (thỏa mãn).

Vậy thời gian cuộc đua diễn ra là 720 giây \[ = 12\] phút.

Lời giải

a) Tổng số lần gieo xúc xắc là: \(7 + 5 + 3 + 6 + 5 + 4 = 30\) (lần).

Tổng số chấm sau các lần gieo là: \(7 \cdot 1 + 5 \cdot 2 + 3 \cdot 3 + 6 \cdot 4 + 5 \cdot 5 + 4 \cdot 6 = 99\) (chấm).

Giá trị trung bình cộng về số chấm sau các lần gieo của bạn A là: \(\frac{{99}}{{30}} \approx 3\) (chấm).

Vậy giá trị trung bình cộng về số chấm sau các lần gieo của bạn A là 3 chấm.

b) Số lần xuất hiện mặt 2 chấm là 5 lần.

Xác suất thực nghiệm của biến cố A: “Số chấm xuất hiện trên mặt con xúc xắc là số 2” là: \(\frac{5}{{30}} = \frac{1}{6}.\)

c) Số lần xuất hiện mặt số chấm lớn hơn 3 (tức là 4 chấm, 5 chấm, 6 chấm) là: \(6 + 5 + 4 = 15\) (chấm).

Xác suất thực nghiệm của biến cố B: “Số chấm xuất hiện trên mặt con xúc xắc là một số lớn hơn 3” là:

\(\frac{{15}}{{30}} = \frac{1}{2}.\)