Câu hỏi:

23/10/2025 1,100 Lưu

(1,0 điểm) Hai bạn An và Bình đua với nhau bằng ván trượt. Biết rằng nếu cả hai cùng dùng ván trượt thì tốc độ của An gấp 3 lần của Bình, nhưng tốc độ trượt ván của Bình sẽ gấp 3 lần tốc độ chạy bộ của An. Khi tham gia cuộc đua, hai bạn xuất phát cùng một lúc bằng ván trượt, nhưng sau đó 3 phút, ván trượt của An bị hỏng và bạn ấy phải chạy bộ về đích. Biết rằng cả hai bạn về đích cùng lúc, hỏi cuộc đua đã diễn ra trong bao nhiêu phút? (Giả sử tốc độ trượt ván, tốc độ chạy bộ của An và tốc độ trượt ván của Bình không thay đổi trong suốt cuộc đua).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Gọi \(x\,\,{\rm{(m}}\,{\rm{/}}\,{\rm{s)}}\) là tốc độ trượt ván của Bình và \(y\) (giây) là thời gian cuộc đua đã diễn ra \(\left( {x > 0\,;\,\,y > 0} \right).\)

Vì tốc độ trượt ván của An gấp 3 lần tốc độ trượt ván của Bình nên tốc độ trượt ván của An là \(3x\,\,{\rm{(m}}\,{\rm{/}}\,{\rm{s)}}{\rm{.}}\)

Vì tốc độ trượt ván của Bình gấp 3 lần tốc độ chạy bộ của An nên An chạy bộ với tốc độ là \(\frac{x}{3}\,\,{\rm{(m}}\,{\rm{/}}\,{\rm{s)}}{\rm{.}}\)

Thời gian An chạy bộ là \(y - 180\) (giây).

Quãng đường mà An trượt ván và chạy là \(3x \cdot 180 + \frac{x}{3} \cdot \left( {y - 180} \right)\,\,\left( {\rm{m}} \right).\)

Quãng đường mà Bình trượt ván là \(xy\,\,\left( {\rm{m}} \right).\)

Vì quãng đường của An và Bình đi là như nhau nên ta có phương trình:

\(3x \cdot 180 + \frac{x}{3} \cdot \left( {y - 180} \right) = xy\)

\(540x + \frac{{xy}}{3} - 60x = xy\)

\(480x = \frac{2}{3}xy\)

\(\frac{2}{3}x = 480\) (do \(x \ne 0)\)

\(y = 720\) (thỏa mãn).

Vậy thời gian cuộc đua diễn ra là 720 giây \[ = 12\] phút.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Diện tích khu vườn hình chữ nhật là: \(xy\,\,\left( {{{\rm{m}}^2}} \right).\)

Bán kính hồ hình tròn tiếp xúc với các cạnh của khu vườn là: \[\frac{x}{2}\,\,({\rm{m}}).\]

Diện tích hồ hình tròn là: \[\pi \cdot {\left( {\frac{x}{2}} \right)^2} = \frac{{\pi {x^2}}}{4}\,\,\left( {{{\rm{m}}^2}} \right).\]

Vậy diện tích phần còn lại của khu vườn sau khi xây hồ là \[\frac{{\pi {x^2}}}{4}\,\,\left( {{{\rm{m}}^2}} \right).\]

b) Vì khu vườn hình chữ nhật có chiều dài gấp hai lần chiều rộng nên \(y = 2x.\)

Diện tích phần còn lại của khu vườn là \(77,76\,\,{{\rm{m}}^{\rm{2}}}\) nên ta có

\(xy - \frac{{\pi {x^2}}}{4} = 77,76\)

\(x \cdot 2x - \frac{{\pi {x^2}}}{4} = 77,76\)

\(8{x^2} - \pi {x^2} = 311,04\)

\({x^2}\left( {8 - \pi } \right) = 311,04\)

\({x^2}\left( {8 - \pi } \right) = 311,04\)

\({x^2} \approx 64\)

\(x = - 8\) (loại) hoặc \(x = 8\) (thỏa mãn).

Lời giải

Cho tam giác ABC có ba góc nhọn (AB < AC) nội tiếp đường tròn O. Vẽ đường kính A của đường tròn (O) (ảnh 1)

a) Vì \(\widehat {ACD}\) chắn nửa đường tròn \(\left( O \right)\) nên \(\widehat {ACD} = 90^\circ \) (góc nội tiếp chắn nửa đường tròn).

Xét \(\Delta ABH\) và \(\Delta ADC\) có

\(\widehat {AHB} = \widehat {ACD} = 90^\circ ;\)

\(\widehat {ABH} = \widehat {ADC}\) (góc nội tiếp cùng chắn cung \(AC).\)

Do đó

Suy ra \(\frac{{AB}}{{AD}} = \frac{{AH}}{{AC}}\) hay \(AB \cdot AC = AH \cdot AD\) (đpcm).

b) Xét \(\Delta AFC\) và \(\Delta ACD\) có:

\(\widehat {CAD}\) chung; \(\widehat {AFC} = \widehat {ACD} = 90^\circ .\)

Do đó

Suy ra \(\frac{{AF}}{{AC}} = \frac{{AC}}{{AD}}\) hay \(AF \cdot AD = A{C^2}\) (đpcm).

Ta có \(\Delta AFC\) vuông tại \(F\) nên \(A,\,\,F,\,\,C\) cùng thuộc đường tròn đường kính \(AC\,;\)

\(\Delta AHC\) vuông tại \(H\) nên \(A,\,\,H,\,\,C\) cùng thuộc đường tròn đường kính \(AC\,.\)

Do đó \(A,\,\,F,\,\,C,\,\,H\) cùng thuộc đường tròn đường kính \(AC\,.\)

Suy ra \(\widehat {CHF} = \widehat {CAF}\) (góc nội tiếp cùng chắn cung \(CF).\)   (1)

Ta có \(\widehat {CAF} + \widehat {ACF} = 90^\circ \) (do \(\Delta AFC\) vuông tại \(F)\) và \(\widehat {FCD} + \widehat {ACF} = 90^\circ .\) Suy ra \(\widehat {CAF} = \widehat {FCD}.\) (2)

Từ (1) và (2) suy ra \(\widehat {CHF} = \widehat {DCF}\) (đpcm).

c) Vì \(\Delta ABC\) có \(BK,\,\,AH\) là đường cao cắt nhau tại \(I\) nên \(I\) là trực tâm của \(\Delta ABC.\) Khi đó \(CI \bot AB.\)

Mà \(BD \bot AB\) (do \(\widehat {ABD}\) nội tiếp chắn nửa đường tròn) nên \(CI\,{\rm{//}}\,BD.\)

Lại có \(BI\,{\rm{//}}\,CD\) (do cùng vuông góc với \(AC)\)

Do đó \(BICD\) là hình bình hành.

Gọi \(M\) là giao điểm của \(DI\) và \(BC.\)

Khi đó \(M\) là trung điểm của \(DI\) và \(BC\) (tính chất hình bình hành).

Xét \(\Delta DAI\) có \(O\) là trung điểm của \(AD\) và \(M\) là trung điểm của \(DI\) nên \(OM\) là đường trung bình của \(\Delta DAI.\)

Suy ra \(OM = \frac{1}{2}AI\) hay \(AI = 2OM.\)

Ta có \(\widehat {BOC} = 2\widehat {BAC} = 2 \cdot 60^\circ = 120^\circ \) (góc nội tiếp chắn cung \(BC).\)

Vì \(\Delta BOC\) cân tại \(O\) có \(OM\) là đường trung tuyến nên \(OM\) đồng thời là phân giác của \(\widehat {BOC}\) và cũng là đường cao của \(\Delta BOC.\)

Khi đó \(\widehat {BOM} = \frac{1}{2}\widehat {BOC} = 60^\circ .\)

Xét \(\Delta BOM\) vuông tại \(M\) có: \[OM = BM \cdot \cot \widehat {MOB} = \frac{1}{2}BC \cdot \cot \widehat {MOB} = \frac{1}{2} \cdot 10 \cdot \cot 60^\circ = \frac{{5\sqrt 3 }}{3}\,\,\left( {{\rm{cm}}} \right).\]

Vậy \[AI = 2 \cdot OM = \frac{{10\sqrt 3 }}{3}\,\,\left( {{\rm{cm}}} \right).\]