Câu hỏi:

23/10/2025 11 Lưu

Phần 3. Trắc nghiệm trả lời ngắn

Trong mỗi câu hỏi, thí sinh viết câu trả lời/ đáp án vào bài làm mà không cần trình bày lời giải chi tiết.

Tháp Eiffel là một công trình kiến trúc bằng thép nằm trên công viên Champ-de-Mars, cạnh sông Seinc, là biểu tượng của Thủ đô Paris nước Pháp. Công trình này do kỹ sư Gustave Eiffel và các đồng nghiệp của mình thiết kế, xây dựng từ năm 1887 đến năm 1889 nhân dịp Triển lãm thế giới năm 1889 và cũng là dịp kỷ niệm 100 năm Cách mạng Pháp.Hãy tính chiều cao của tháp Eiffel mà không cần lên đỉnh tháp, biết góc tạo bởi tia nắng mặt trời với mặt đất là \(62^\circ {\rm{C}}\) và bóng của tháp trên mặt đất là \[175{\rm{ m}}\] (đơn vị mét, làm tròn kết quả đến hàng đơn vị).
Tháp Eiffel là một công trình kiến trúc bằng thép nằm trên công viên Champ-de-Mars, cạnh sông Seinc, là biểu tượng của Thủ đô Paris nước Pháp. (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Xét \(\Delta ABH\) vuông tại \(H\), ta có:

\(\tan A = \frac{{BH}}{{AH}}\) hay \(\tan 62^\circ  = \frac{{BH}}{{175}}\) nên \(BH = 175 \cdot \tan 62^\circ  = 329\;\,({\rm{m}})\).

Vậy chiều cao của tháp Eiffel là \(329\;\,{\rm{m}}.\)

Đáp án: 329.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Xét \(\Delta ABC\) vuông tại \(C\), ta có:

\[\cos A = \frac{{AC}}{{AB}}\] hay \[\cos 60^\circ  = \frac{{AC}}{{AB}}\] nên \[\frac{1}{2} = \frac{{AC}}{{2000}}\], suy ra \[AC = \frac{{2\,\,000}}{2} = 1\,\,000\;\,\,({\rm{m}})\].

b) Sai. Xét \(\Delta ABC\) vuông tại \(C\), ta có:

\(\sin A = \frac{{BC}}{{AB}}\) hay \(\sin 60^\circ  = \frac{{BC}}{{AB}}\) nên \(\frac{{\sqrt 3 }}{2} = \frac{{BC}}{{2\,\,000}}\), suy ra \(AB = \frac{{2\,\,000\sqrt 3 }}{2} = 1\,\,732\;\,\,({\rm{m}})\).

c) Đúng. Tổng độ dài đường dây điện nối từ \[A\] đến \[C\] rồi nối tiếp đến \[B\] là:

\(AC + BC = 1\,\,000 + 1\,\,732 = 2732\,\,({\rm{m}}).\)

d) Sai. Chiều dài tăng thêm của đường dây điện là: \(2\,\,732 - 2\,\,000 = 732\,\,({\rm{m}})\).

Lời giải

Lời giải

núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\]  Đáp án: 1906. (ảnh 2)

Gọi \[D\] và \[E\] lần lượt là điểm đặt mắt khi người quan sát đỉnh núi đứng ở vị trí \[B\] và \[C.\]

Gọi \[I\] là hình chiếu của điểm \[D\] trên \[AH\].

So với mặt đất thì \[BD\] và \[CE\] là phương thẳng đứng; \[HC\] và \[IE\] là phương ngang nên các tứ giác \[IHBD,\,\,IHCE,\,\,DBCE\] là hình chữ nhật.

Do đó \[DE = BC = \,475\,\,{\rm{m}}\]; \[IH = DB = EC = 1,6\,\,{\rm{m}}\].

• Xét \[\Delta AID\] vuông tại \[I\] nên:

\[ID = AI \cdot \,\cot \widehat {ADI} = AI \cdot \,\cot 34^\circ  = AI \cdot \tan 56^\circ \] (do \[\cot 34^\circ  = \tan 56^\circ \]).   \[\left( 1 \right)\]

• Xét \[\Delta AIE\] vuông tại \[I\] nên:

\[IE = AI \cdot \,\cot \widehat {AEI} = AI \cdot \,\cot 30^\circ  = AI \cdot \tan 60^\circ \] (do \[\cot 30^\circ  = \tan 60^\circ \]).   \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[IE - ID = AI\left( {\tan 60^\circ  - \tan 56^\circ } \right)\]

\[AI\left( {\tan 60^\circ  - \tan 56^\circ } \right) = 475\]

 \[AI = \frac{{475}}{{\tan 60^\circ  - \tan 56^\circ }} \approx 1\,\,903,9\,\,({\rm{m}}).\]

Chiều cao \[AH\] của ngọn núi là:

\[AH = AI + IH \approx 1903,9\, + 1,6\, \approx 1906\,\,({\rm{m)}}{\rm{.}}\]

Vậy chiều cao \[AH\] của ngọn núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\]

Đáp án: 1906.

Câu 3

A. \[\sin \alpha = \cot \beta .\]                            
B. \[\sin \alpha = \tan \beta .\]   
C. \[\sin \alpha = \cos \beta .\]                                     
D. \[{\rm{cos}}\alpha = \cot \beta .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

A. \[\cot E = \frac{1}{2}.\]                                   
B. \[\cot E = 2.\]                                   
C. \[\cot E = \frac{{\sqrt 5 }}{5}.\]                             
D. \[\cot E = \sqrt 5 .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP