Đề kiểm tra Toán 9 Chân trời sáng tạo Chương 4 có đáp án - Đề 2
10 người thi tuần này 4.6 26 lượt thi 11 câu hỏi 45 phút
🔥 Đề thi HOT:
15 câu Trắc nghiệm Toán 9 Kết nối tri thức Bài 1. Khái niệm phương trình và hệ hai phương trình bậc nhất hai ẩn có đáp án
Dạng 2: Kỹ thuật chọn điểm rơi trong bài toán cực trị xảy ra ở biên có đáp án
Tổng hợp các bài toán thực tế ôn thi vào 10 Toán 9 có đáp án (Phần 1: Đại số)
Dạng 1: Giải hệ phương trình bằng phương pháp đặt ẩn phụ
Dạng 6: Bài toán về tăng giá, giảm giá và tăng, giảm dân số có đáp án
Nội dung liên quan:
Danh sách câu hỏi:
Câu 1
Lời giải
Lời giải
Chọn C
Vì \[\alpha ,\,\,\beta \] là hai góc phụ nhau nên \[\beta = 90^\circ - \alpha .\]
Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:
\[\sin \alpha = \cos \left( {90^\circ - \alpha } \right) = \cos \beta ;\] \[\tan \alpha = \cot \left( {90^\circ - \alpha } \right) = \cot \beta .\]
Câu 2
Lời giải
Chọn D
Ta có, góc tạo bởi cạnh \[AB\] và phương năm ngang trên mặt đất là \[\widehat {ABH}\].
Xét tam giác \[ABH\] vuông tại \[H\], ta có:
\[{\rm{cos}}\widehat {ABH} = \frac{{BH}}{{AB}} = \frac{{1,5}}{4} = 0,375\].
Vậy \[\widehat {ABH} \approx 68^\circ \].
Câu 3
Lời giải
Chọn A
![Cho tam giác \[DEF\] vuông tại \[D\] có \[DE = \sqrt 2 {\rm{\;cm}},\,\,EF = \sqrt {10} {\rm{\;cm}}.\] Tỉ số lượng giác \[\cot E\] là A. \[\cot E = \frac{1}{2}.\] B. \[\cot E = 2.\] C. \[\cot E = \frac{{\sqrt 5 }}{5}.\] D. \[\cot E = \sqrt 5 .\] (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/60-1761200606.png)
Áp dụng định lí Pythagore cho tam giác \[DEF\] vuông tại \[D\], ta được:
\[D{F^2} = E{F^2} - D{E^2} = {\left( {\sqrt {10} } \right)^2} - {\left( {\sqrt 2 } \right)^2} = 8.\] Suy ra \[DF = 2\sqrt 2 {\rm{\;(cm)}}{\rm{.}}\]
Vì tam giác \[DEF\] vuông tại \[D\] nên \[\cot E = \frac{{DE}}{{DF}} = \frac{{\sqrt 2 }}{{2\sqrt 2 }} = \frac{1}{2}.\]
Câu 4
Lời giải
Chọn A
Tam giác \[ABC\] vuông tại \[B\] có: \[\cos A = \frac{{AB}}{{AC}} = \frac{{130}}{{150}} = \frac{{13}}{{15}}\] nên \[\widehat {BAC} \approx 30^\circ {\rm{.}}\]
Vậy dòng nước đã đẩy con đò lệch đi một góc so với phương dự định ban đầu khoảng \[30^\circ .\]
Câu 5
Lời giải
Chọn B

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.
Khi thang tạo với mặt đất một góc có độ lớn \[6{\rm{0}}^\circ \] và \[7{\rm{0}}^\circ \] thì khoảng cách từ chân thang đến chân tường lần lượt là \[AH\] và \[A'H'\].
• Tam giác \[ABH\] vuông tại \[H\] có \[AH = AB \cdot \cos A = 3,5\cos 60^\circ = 1,75\,\,({\rm{m}})\].
• Tam giác \[A'B'H\] vuông tại \[H\] có \[A'H = A'B' \cdot \cos A' = 3,5\cos 70^\circ \approx 1,20\,\,({\rm{m}})\].
Do đó \[1,20\, \le x \le 1,75\].
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![Chọn D Ta có, góc tạo bởi cạnh \[AB\] và phương năm ngang trên mặt đất là \[\widehat {ABH}\]. Xét tam giác \[ABH\] vuôn (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/8-1761181578.png)

![a) Độ dài \[AC\] đường dây (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/45-1761183430.png)


![núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\] Đáp án: 1906. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/62-1761201093.png)