Một khúc sông rộng khoảng \[130\,\,{\rm{m}}\]. Một con đò dự định chèo từ bờ bên này sang bờ bên kia theo phương vuông góc với bờ sông, nhưng do bị dòng nước đẩy xiên nên phải chèo khoảng \[150\,\,{\rm{m}}\] mới sang được bờ bên kia. Dòng nước đã đẩy con đò lệch đi một góc so với phương dự định ban đầu là

Quảng cáo
Trả lời:
Chọn A
Tam giác \[ABC\] vuông tại \[B\] có: \[\cos A = \frac{{AB}}{{AC}} = \frac{{130}}{{150}} = \frac{{13}}{{15}}\] nên \[\widehat {BAC} \approx 30^\circ {\rm{.}}\]
Vậy dòng nước đã đẩy con đò lệch đi một góc so với phương dự định ban đầu khoảng \[30^\circ .\]
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải

a) Sai. Xét \(\Delta ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \) nên \(\widehat C = 180^\circ - 15^\circ - 30^\circ = 135^\circ \).
Tam giác \(ABC\) có \(\widehat C\) là góc tù nên tam giác \(ABC\) là tam giác tù.
b) Đúng. Xét \(\Delta HAB\) vuông tại \(H\) có: \(AH = AB \cdot \sin 30^\circ = 7,5\,\,({\rm{cm}}).\)
c) Đúng. Xét \(\Delta HAC\) vuông tại \(H\) có \(\widehat {ACH} = \widehat B + \widehat {CAB} = 45^\circ \) hay \(\Delta HAC\) vuông cân tại \(H.\)
d) Sai. Xét \(\Delta HAB\) vuông tại \(H\) có:\(BH = AB \cdot \cos 30^\circ = \frac{{15\sqrt 3 }}{2}\,\,({\rm{cm}}).\)
Vì \(\Delta HAC\)vuông cân tại \(H\) nên \(CH = 7,5\,\,{\rm{cm}}{\rm{.}}\)
Khi đó, \(BC = BH - CH \approx 5,49\,\,({\rm{cm}}).\)
Vậy \({S_{ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 7,5 \cdot 5,49 = 20,59\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right) \approx 21\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Lời giải
Lời giải
![núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\] Đáp án: 1906. (ảnh 2)](https://video.vietjack.com/upload2/quiz_source1/2025/10/63-1761201081.png)
Gọi \[D\] và \[E\] lần lượt là điểm đặt mắt khi người quan sát đỉnh núi đứng ở vị trí \[B\] và \[C.\]
Gọi \[I\] là hình chiếu của điểm \[D\] trên \[AH\].
So với mặt đất thì \[BD\] và \[CE\] là phương thẳng đứng; \[HC\] và \[IE\] là phương ngang nên các tứ giác \[IHBD,\,\,IHCE,\,\,DBCE\] là hình chữ nhật.
Do đó \[DE = BC = \,475\,\,{\rm{m}}\]; \[IH = DB = EC = 1,6\,\,{\rm{m}}\].
• Xét \[\Delta AID\] vuông tại \[I\] nên:
\[ID = AI \cdot \,\cot \widehat {ADI} = AI \cdot \,\cot 34^\circ = AI \cdot \tan 56^\circ \] (do \[\cot 34^\circ = \tan 56^\circ \]). \[\left( 1 \right)\]
• Xét \[\Delta AIE\] vuông tại \[I\] nên:
\[IE = AI \cdot \,\cot \widehat {AEI} = AI \cdot \,\cot 30^\circ = AI \cdot \tan 60^\circ \] (do \[\cot 30^\circ = \tan 60^\circ \]). \[\left( 2 \right)\]
Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[IE - ID = AI\left( {\tan 60^\circ - \tan 56^\circ } \right)\]
\[AI\left( {\tan 60^\circ - \tan 56^\circ } \right) = 475\]
\[AI = \frac{{475}}{{\tan 60^\circ - \tan 56^\circ }} \approx 1\,\,903,9\,\,({\rm{m}}).\]
Chiều cao \[AH\] của ngọn núi là:
\[AH = AI + IH \approx 1903,9\, + 1,6\, \approx 1906\,\,({\rm{m)}}{\rm{.}}\]
Vậy chiều cao \[AH\] của ngọn núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\]
Đáp án: 1906.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\] Đáp án: 1906. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/62-1761201093.png)

![a) Độ dài \[AC\] đường dây (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/45-1761183430.png)

![Chọn D Ta có, góc tạo bởi cạnh \[AB\] và phương năm ngang trên mặt đất là \[\widehat {ABH}\]. Xét tam giác \[ABH\] vuôn (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/8-1761181578.png)