Câu hỏi:

23/10/2025 8 Lưu

Một khúc sông rộng khoảng \[130\,\,{\rm{m}}\]. Một con đò dự định chèo từ bờ bên này sang bờ bên kia theo phương vuông góc với bờ sông, nhưng do bị dòng nước đẩy xiên nên phải chèo khoảng \[150\,\,{\rm{m}}\] mới sang được bờ bên kia. Dòng nước đã đẩy con đò lệch đi một góc so với phương dự định ban đầu là

Chọn A  Tam giác \[ABC\ (ảnh 1)

A. \[{\rm{30}}^\circ \].  
B. \[29^\circ \].            
C. \[{\rm{41}}^\circ \].       
D. \[6{\rm{0}}^\circ \].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Tam giác \[ABC\] vuông tại \[B\] có: \[\cos A = \frac{{AB}}{{AC}} = \frac{{130}}{{150}} = \frac{{13}}{{15}}\] nên \[\widehat {BAC} \approx 30^\circ {\rm{.}}\]

Vậy dòng nước đã đẩy con đò lệch đi một góc so với phương dự định ban đầu khoảng \[30^\circ .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Đúng. Xét \(\Delta ABC\) vuông tại \(C\), ta có:

\[\cos A = \frac{{AC}}{{AB}}\] hay \[\cos 60^\circ  = \frac{{AC}}{{AB}}\] nên \[\frac{1}{2} = \frac{{AC}}{{2000}}\], suy ra \[AC = \frac{{2\,\,000}}{2} = 1\,\,000\;\,\,({\rm{m}})\].

b) Sai. Xét \(\Delta ABC\) vuông tại \(C\), ta có:

\(\sin A = \frac{{BC}}{{AB}}\) hay \(\sin 60^\circ  = \frac{{BC}}{{AB}}\) nên \(\frac{{\sqrt 3 }}{2} = \frac{{BC}}{{2\,\,000}}\), suy ra \(AB = \frac{{2\,\,000\sqrt 3 }}{2} = 1\,\,732\;\,\,({\rm{m}})\).

c) Đúng. Tổng độ dài đường dây điện nối từ \[A\] đến \[C\] rồi nối tiếp đến \[B\] là:

\(AC + BC = 1\,\,000 + 1\,\,732 = 2732\,\,({\rm{m}}).\)

d) Sai. Chiều dài tăng thêm của đường dây điện là: \(2\,\,732 - 2\,\,000 = 732\,\,({\rm{m}})\).

Lời giải

Lời giải

núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\]  Đáp án: 1906. (ảnh 2)

Gọi \[D\] và \[E\] lần lượt là điểm đặt mắt khi người quan sát đỉnh núi đứng ở vị trí \[B\] và \[C.\]

Gọi \[I\] là hình chiếu của điểm \[D\] trên \[AH\].

So với mặt đất thì \[BD\] và \[CE\] là phương thẳng đứng; \[HC\] và \[IE\] là phương ngang nên các tứ giác \[IHBD,\,\,IHCE,\,\,DBCE\] là hình chữ nhật.

Do đó \[DE = BC = \,475\,\,{\rm{m}}\]; \[IH = DB = EC = 1,6\,\,{\rm{m}}\].

• Xét \[\Delta AID\] vuông tại \[I\] nên:

\[ID = AI \cdot \,\cot \widehat {ADI} = AI \cdot \,\cot 34^\circ  = AI \cdot \tan 56^\circ \] (do \[\cot 34^\circ  = \tan 56^\circ \]).   \[\left( 1 \right)\]

• Xét \[\Delta AIE\] vuông tại \[I\] nên:

\[IE = AI \cdot \,\cot \widehat {AEI} = AI \cdot \,\cot 30^\circ  = AI \cdot \tan 60^\circ \] (do \[\cot 30^\circ  = \tan 60^\circ \]).   \[\left( 2 \right)\]

Từ \[\left( 1 \right)\] và \[\left( 2 \right)\] suy ra \[IE - ID = AI\left( {\tan 60^\circ  - \tan 56^\circ } \right)\]

\[AI\left( {\tan 60^\circ  - \tan 56^\circ } \right) = 475\]

 \[AI = \frac{{475}}{{\tan 60^\circ  - \tan 56^\circ }} \approx 1\,\,903,9\,\,({\rm{m}}).\]

Chiều cao \[AH\] của ngọn núi là:

\[AH = AI + IH \approx 1903,9\, + 1,6\, \approx 1906\,\,({\rm{m)}}{\rm{.}}\]

Vậy chiều cao \[AH\] của ngọn núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\]

Đáp án: 1906.

Câu 3

A. \[\sin \alpha = \cot \beta .\]                            
B. \[\sin \alpha = \tan \beta .\]   
C. \[\sin \alpha = \cos \beta .\]                                     
D. \[{\rm{cos}}\alpha = \cot \beta .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. \[\cot E = \frac{1}{2}.\]                                   
B. \[\cot E = 2.\]                                   
C. \[\cot E = \frac{{\sqrt 5 }}{5}.\]                             
D. \[\cot E = \sqrt 5 .\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP