Một cano chạy với tốc độ \(10\;\,{\rm{km}}/{\rm{h}}\) vượt qua một khúc sông nước chảy mạnh mất 6 phút. Biết rằng đường đi của ca nô tạo với bờ một góc \(55^\circ .\) Tính chiều rộng \[BC\] của khúc sông (đơn vị mét, làm tròn đến hàng đơn vị).

Một cano chạy với tốc độ \(10\;\,{\rm{km}}/{\rm{h}}\) vượt qua một khúc sông nước chảy mạnh mất 6 phút. Biết rằng đường đi của ca nô tạo với bờ một góc \(55^\circ .\) Tính chiều rộng \[BC\] của khúc sông (đơn vị mét, làm tròn đến hàng đơn vị).

Quảng cáo
Trả lời:
Lời giải
Quãng đường cano đi trong 6 phút là:
\[10 \cdot \frac{6}{{60}} = 1\;\,\,({\rm{km)}} = 1\,\,000\;\,({\rm{m)}}{\rm{.}}\]
Xét \(\Delta ABC\) vuông tại \(C\), ta có:
\(\sin \widehat {BAC} = \frac{{BC}}{{AB}}\) hay \(\sin 55^\circ = \frac{{BC}}{{1\,\,000}}\) nên \(BC = 1\,\,000 \cdot \sin 55^\circ = 819\;\,({\rm{m)}}\).
Vậy chiều rộng \[BC\] của khúc sông là 819 m.
Đáp án: 819.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Chọn B

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.
Khi thang tạo với mặt đất một góc có độ lớn \[6{\rm{0}}^\circ \] và \[7{\rm{0}}^\circ \] thì khoảng cách từ chân thang đến chân tường lần lượt là \[AH\] và \[A'H'\].
• Tam giác \[ABH\] vuông tại \[H\] có \[AH = AB \cdot \cos A = 3,5\cos 60^\circ = 1,75\,\,({\rm{m}})\].
• Tam giác \[A'B'H\] vuông tại \[H\] có \[A'H = A'B' \cdot \cos A' = 3,5\cos 70^\circ \approx 1,20\,\,({\rm{m}})\].
Do đó \[1,20\, \le x \le 1,75\].
Lời giải

a) Sai. Xét \(\Delta ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \) nên \(\widehat C = 180^\circ - 15^\circ - 30^\circ = 135^\circ \).
Tam giác \(ABC\) có \(\widehat C\) là góc tù nên tam giác \(ABC\) là tam giác tù.
b) Đúng. Xét \(\Delta HAB\) vuông tại \(H\) có: \(AH = AB \cdot \sin 30^\circ = 7,5\,\,({\rm{cm}}).\)
c) Đúng. Xét \(\Delta HAC\) vuông tại \(H\) có \(\widehat {ACH} = \widehat B + \widehat {CAB} = 45^\circ \) hay \(\Delta HAC\) vuông cân tại \(H.\)
d) Sai. Xét \(\Delta HAB\) vuông tại \(H\) có:\(BH = AB \cdot \cos 30^\circ = \frac{{15\sqrt 3 }}{2}\,\,({\rm{cm}}).\)
Vì \(\Delta HAC\)vuông cân tại \(H\) nên \(CH = 7,5\,\,{\rm{cm}}{\rm{.}}\)
Khi đó, \(BC = BH - CH \approx 5,49\,\,({\rm{cm}}).\)
Vậy \({S_{ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 7,5 \cdot 5,49 = 20,59\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right) \approx 21\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
![núi là \[1\,\,906\,\,{\rm{m}}{\rm{.}}\] Đáp án: 1906. (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/62-1761201093.png)
![a) Độ dài \[AC\] đường dây (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/45-1761183430.png)

![Chọn D Ta có, góc tạo bởi cạnh \[AB\] và phương năm ngang trên mặt đất là \[\widehat {ABH}\]. Xét tam giác \[ABH\] vuôn (ảnh 1)](https://video.vietjack.com/upload2/quiz_source1/2025/10/8-1761181578.png)