Câu hỏi:

23/10/2025 53 Lưu

Phần 1. Trắc nghiệm nhiều phương án lựa chọn

Mỗi câu hỏi thí sinh chỉ chọn một phương án.

Cho \[\alpha ,\,\,\beta \] là hai góc phụ nhau. Kết luận nào sau đây đúng?

A. \[\sin \alpha = \cot \beta .\]                            
B. \[\sin \alpha = \tan \beta .\]   
C. \[\sin \alpha = \cos \beta .\]                                     
D. \[{\rm{cos}}\alpha = \cot \beta .\]

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Lời giải

Chọn C

Vì \[\alpha ,\,\,\beta \] là hai góc phụ nhau nên \[\beta  = 90^\circ  - \alpha .\]

Theo định lí tỉ số lượng giác của hai góc phụ nhau, ta có:

\[\sin \alpha  = \cos \left( {90^\circ  - \alpha } \right) = \cos \beta ;\]      \[\tan \alpha  = \cot \left( {90^\circ  - \alpha } \right) = \cot \beta .\]

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn B

Gắn dữ kiện của bài toán vào m (ảnh 1)

Gắn dữ kiện của bài toán vào mô hình Toán học như trên hình vẽ.

Khi thang tạo với mặt đất một góc có độ lớn \[6{\rm{0}}^\circ \] và \[7{\rm{0}}^\circ \] thì khoảng cách từ chân thang đến chân tường lần lượt là \[AH\] và \[A'H'\].

• Tam giác \[ABH\] vuông tại \[H\] có \[AH = AB \cdot \cos A = 3,5\cos 60^\circ  = 1,75\,\,({\rm{m}})\].

• Tam giác \[A'B'H\] vuông tại \[H\] có \[A'H = A'B' \cdot \cos A' = 3,5\cos 70^\circ  \approx 1,20\,\,({\rm{m}})\].

Do đó \[1,20\, \le x \le 1,75\].

Lời giải

Cho tam giác \(ABC\) có \(\widehat A (ảnh 1)

a) Sai. Xét \(\Delta ABC\) có \(\widehat A = 15^\circ \,;\,\,\widehat B = 30^\circ \) nên \(\widehat C = 180^\circ  - 15^\circ  - 30^\circ  = 135^\circ \).

Tam giác \(ABC\) có \(\widehat C\) là góc tù nên tam giác \(ABC\) là tam giác tù.

b) Đúng. Xét \(\Delta HAB\) vuông tại \(H\) có: \(AH = AB \cdot \sin 30^\circ  = 7,5\,\,({\rm{cm}}).\)

c) Đúng. Xét \(\Delta HAC\) vuông tại \(H\) có \(\widehat {ACH} = \widehat B + \widehat {CAB} = 45^\circ \) hay \(\Delta HAC\) vuông cân tại \(H.\)

d) Sai. Xét \(\Delta HAB\) vuông tại \(H\) có:\(BH = AB \cdot \cos 30^\circ  = \frac{{15\sqrt 3 }}{2}\,\,({\rm{cm}}).\)

Vì \(\Delta HAC\)vuông cân tại \(H\) nên \(CH = 7,5\,\,{\rm{cm}}{\rm{.}}\)

Khi đó, \(BC = BH - CH \approx 5,49\,\,({\rm{cm}}).\)

Vậy \({S_{ABC}} = \frac{1}{2} \cdot AH \cdot BC = \frac{1}{2} \cdot 7,5 \cdot 5,49 = 20,59\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right) \approx 21\,\,\left( {{\rm{c}}{{\rm{m}}^{\rm{2}}}} \right)\).

Câu 7

A. \(\widehat {ABH} \approx 67^\circ .\)         
B. \(\widehat {ABH} \approx 69^\circ .\)                                
C. \(\widehat {ABH} \approx 66^\circ .\)                                
D. \(\widehat {ABH} \approx 68^\circ .\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP