Câu hỏi:

24/10/2025 11 Lưu

Trong không gian Oxyz, phương trình nào dưới đây là phương trình mặt phẳng đi qua điểm \(M\left( {1;2; - 3} \right)\) và có một vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 2;3} \right)\).

\(x - 2y + 3z + 12 = 0\).

\(x - 2y - 3z - 6 = 0\).

\(x - 2y + 3z - 12 = 0\).

\(x - 2y - 3z + 6 = 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Đáp án đúng: A

Phương trình mặt phẳng đi qua điểm M(1; 2; −3) và có một vectơ pháp tuyến \(\overrightarrow n = \left( {1; - 2;3} \right)\)là \(x - 1 - 2\left( {y - 2} \right) + 3\left( {z + 3} \right) = 0\)\( \Leftrightarrow x - 2y + 3z + 12 = 0\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(C\left( {2;4;0} \right)\); \(M\left( {0;2;2} \right)\); \(G\left( {\frac{4}{3};\frac{4}{3};\frac{4}{3}} \right)\).

Ta có \(\overrightarrow {AM} = \left( {0;2;2} \right),\overrightarrow {AG} = \left( {\frac{4}{3};\frac{4}{3};\frac{4}{3}} \right),\left[ {\overrightarrow {AM} ,\overrightarrow {AG} } \right] = \left( {0;\frac{8}{3}; - \frac{8}{3}} \right) = \frac{8}{3}\left( {0;1; - 1} \right) = \frac{8}{3}\overrightarrow n \).

Mặt phẳng (AMG) đi qua A nhận \(\overrightarrow n = \left( {0;1; - 1} \right)\) làm vectơ pháp tuyến có phương trình là \(y - z = 0\).

Khi đó \(d\left( {B,\left( {AMG} \right)} \right) = \frac{{\left| 4 \right|}}{{\sqrt 2 }} \approx 2,83\).

Trả lời: 2,83.

Câu 2

\(2x - 3y + 6z + 12 = 0\).

\(2x + 3y - 6z - 12 = 0\).

\(2x - 3y + 6z = 0\).

\(2x + 3y + 6z + 12 = 0\).

Lời giải

Đáp án đúng: C

Ta có \(\overrightarrow {AB} = \left( {0;4;2} \right),\overrightarrow {AC} = \left( { - 3;4;3} \right),\left[ {\overrightarrow {AB} ,\overrightarrow {AC} } \right] = \left( {4; - 6;12} \right) = 2\left( {2; - 3;6} \right) = 2\overrightarrow n \).

Mặt phẳng (ABC) đi qua điểm A và nhận \(\overrightarrow n = \left( {2; - 3;6} \right)\) làm vectơ pháp tuyến có phương trình là

\(2\left( {x - 3} \right) - 3\left( {y + 2} \right) + 6\left( {z + 2} \right) = 0\)\( \Leftrightarrow 2x - 3y + 6z = 0\).