Khi gắn hệ tọa độ Oxyz (đơn vị trên mỗi trục tính theo kilômét) vào một sân bay, mặt phẳng (Oxy) trùng với mặt sân bay. Một máy bay bay theo đường thẳng từ vị trí A(2; −1; 3) đến vị trí B(8; 7; 1). Góc giữa đường bay (một phần của đường thẳng AB) và sân bay (một phần của mặt phẳng (Oxy)) bằng bao nhiêu độ (làm tròn kết quả đến hàng đơn vị)?
Quảng cáo
Trả lời:
Đường thẳng AB có vectơ chỉ phương là \(\overrightarrow u = \left( {3;4; - 1} \right)\), mặt phẳng \(\left( {Oxy} \right)\) có vectơ pháp tuyến là \(\overrightarrow n = \left( {0;0;1} \right)\).
Góc α giữa đường bay (một phần của đường thẳng AB) và sân bay (một phần của mặt phẳng (Oxy)).
Ta có \(\sin \alpha = \frac{1}{{\sqrt {26} }} \Rightarrow \alpha \approx 11^\circ \).
Trả lời: 11.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tổng ôn lớp 12 môn Toán, Lí, Hóa, Văn, Anh, Sinh Sử, Địa, KTPL (Form 2025) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vectơ \(\overrightarrow {AB} = \left( {300;50; - 50} \right)\) nên \(\overrightarrow u = \left( {6;1; - 1} \right)\) là một vectơ chỉ phương của đường thẳng AB.
Phương trình đường thẳng AB là \(\frac{{x + 500}}{6} = \frac{{y + 250}}{1} = \frac{{z - 150}}{{ - 1}}\).
Gọi H là hình chiếu của điểm O trên đường thẳng AB thì OH là khoảng cách ngắn nhất giữa máy bay và đài kiểm soát. Khi đó \(H\left( {6t - 500;t - 250; - t + 150} \right)\).
Ta có \(\overrightarrow {OH} .\overrightarrow u = \left( {6t - 500} \right).6 + \left( {t - 250} \right).1 + \left( { - t + 150} \right).\left( { - 1} \right) = 0\)\( \Leftrightarrow t = \frac{{1700}}{{19}}\).
Suy ra tọa độ của vị trí máy bay khi đó là \(\left( {\frac{{700}}{{19}}; - \frac{{3050}}{{19}};\frac{{1150}}{{19}}} \right)\).
Vậy \( - 3a - b - c = - \frac{{200}}{{19}} \approx - 11\).
Trả lời: −11.
Lời giải
a) Thay tọa độ điểm M vào phương trình đường thẳng ta được \[\left\{ \begin{array}{l}0 = t\\1 = 1\\ - 1 = - 1 - 2t\end{array} \right. \Rightarrow t = 0\] (đúng).
Suy ra M ∈ △.
b) Một vectơ chỉ phương của Δ là \(\overrightarrow u = \left( {1;0; - 2} \right)\).
c) Điển N có hoành độ bằng 2 suy ra \(t = 2\)
Tọa độ điểm N là \[\left\{ \begin{array}{l}x = 2\\y = 1\\z = - 5\end{array} \right. \Rightarrow N\left( {2;1; - 5} \right)\].
Tung độ của N là 1.
d) \(d\left( {N,\left( P \right)} \right) = \frac{{\left| {2.2 + 1 - 2.\left( { - 5} \right) + 1} \right|}}{{\sqrt {{2^2} + {1^2} + {{\left( { - 2} \right)}^2}} }} = \frac{{16}}{3}\).
Đáp án: a) Đúng; b) Sai; c) Sai; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
\(\left\{ \begin{array}{l}x = 1 + 2t\\y = 2 + t\\z = - 3 - 2t\end{array} \right.\).
\(\left\{ \begin{array}{l}x = 3 + t\\y = 1 + 2t\\z = - 7 + 3t\end{array} \right.\).
\(\left\{ \begin{array}{l}x = - 1 + 2t\\y = 1 + t\\z = 5 - 2t\end{array} \right.\).
\(\left\{ \begin{array}{l}x = 2 + t\\y = 1 + 2t\\z = - 2 + 3t\end{array} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.