Trong không gian \(Oxyz\), cho điểm \(A(2;1;0)\) mặt phẳng \((P): - x + 2y - 4z + 4 = 0\) và mặt phẳng \((Q): - x + 2y - 4z + 10 = 0\).
(a) \((P)\) vuông góc với \((Q)\).
(b) Mặt phẳng \((\alpha )\) đi qua hai điểm \(O\), \(A\) và vuông góc với mặt phẳng \((P)\) có phương trình dạng \(ax + by + 5z + d = 0\). Khi đó \(a + b + d = 4\).
(c) Khoảng cách giữa mặt phẳng \((P)\) và mặt phẳng \((Q)\) bằng \(\frac{3}{{\sqrt {21} }}\).
(d) Khoảng cách từ điểm \(A\) đến mặt phẳng \((P)\) bằng \(\frac{4}{{\sqrt {21} }}\).
Quảng cáo
Trả lời:
a) Ta có \(\overrightarrow {{n_P}} = \left( { - 1;2; - 4} \right),\overrightarrow {{n_Q}} = \left( { - 1;2; - 4} \right)\) lần lượt là vectơ pháp tuyến của mặt phẳng (P) và (Q).
Ta có \(\overrightarrow {{n_P}} = \overrightarrow {{n_Q}} \) và \(4 \ne 10\) nên (P) // (Q).
b) Có \(\overrightarrow {OA} = \left( {2;1;0} \right)\), \(\overrightarrow n = \left[ {\overrightarrow {OA} ,\overrightarrow {{n_P}} } \right] = \left( { - 4;8;5} \right)\).
Mặt phẳng (α) đi qua O và nhận \(\overrightarrow n = \left( { - 4;8;5} \right)\) làm vectơ pháp tuyến có phương trình là
\( - 4x + 8y + 5z = 0\).
Suy ra \(a = - 4;b = 8;d = 0\). Khi đó \(a + b + d = 4\).
c) Lấy điểm B(0; 0; 1) ∈ (P).
Ta có \(d\left( {\left( P \right),\left( Q \right)} \right) = d\left( {B,\left( Q \right)} \right) = \frac{{\left| { - 4 + 10} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {{\left( { - 4} \right)}^2}} }} = \frac{6}{{\sqrt {21} }}\).
d) \(d\left( {A,\left( P \right)} \right) = \frac{{\left| { - 2 + 2.1 - 4.0 + 4} \right|}}{{\sqrt {{{\left( { - 1} \right)}^2} + {2^2} + {{\left( { - 4} \right)}^2}} }} = \frac{4}{{\sqrt {21} }}\).
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 250+ Công thức giải nhanh môn Toán 12 (chương trình mới) ( 18.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Mặt phẳng (Oxy) có vectơ pháp tuyến \(\overrightarrow k = \left( {0;0;1} \right)\).
Khi đó \(\sin \gamma = \frac{{\left| {40} \right|}}{{\sqrt {{{150}^2} + {{150}^2} + {{40}^2}} }} = \frac{4}{{\sqrt {466} }}\) \( \Rightarrow \gamma \approx 11^\circ \).
Trả lời: 11.
Lời giải
Gọi M = d ◠ d' → M(1; 2; 4).
Ta có N ∈ d' → N(1; 2; 1 + 3t') \( \Rightarrow \overrightarrow {MN} = \left( {0;0;3t' - 3} \right)\). Theo giả thiết MN = 6.
Suy ra \(\left| {3t' - 3} \right| = 6 \Leftrightarrow \left[ \begin{array}{l}t' = 3\\t' = - 1\end{array} \right. \Rightarrow \left[ \begin{array}{l}N\left( {1;2;10} \right)\\N\left( {1;2; - 2} \right)\end{array} \right.\).
Vì c < 0 nên \(N\left( {1;2; - 2} \right)\).
Vậy a = 1, b = 2, c = −2 a – b + c = −3.
Trả lời: −3.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\(\Delta \) cắt \(\Delta '\).
\(\Delta \) và \(\Delta '\) chéo nhau.
\[\Delta {\rm{//}}\Delta {\rm{'}}\].
\(\Delta \equiv \Delta '\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\(\left( {2;3; - 1} \right)\).
\(\left( { - 1; - 4;3} \right)\)
\(\left( { - 1;1; - 2} \right)\).
\(\left( {2; - 2;4} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.