Trong không gian \(Oxyz\) (đơn vị trên mỗi trục tính theo kilômét), một trạm thu phát sóng điện thoại di động có đầu thu phát được đặt ở vị trí \(I\left( {1;3;7} \right)\). Trạm thu phát sóng đó được thiết kế với bán kính phủ sóng là \(3{\rm{km}}\).
(a) Phương trình mặt cầu \((S)\) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \({(x + 1)^2} + {(y + 3)^2} + {(z + 7)^2} = 9\).
(b) Nếu người dùng điện thoại ở vị trí có toạ độ \(B\left( {5;6;7} \right)\) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó.
(c) Điểm \(A\left( {2;2;7} \right)\) nằm ngoài mặt cầu \((S)\).
(d) Nếu người dùng điện thoại ở vị trí có tọa độ \(A\left( {2;2;7} \right)\) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó.
Quảng cáo
Trả lời:
a)Phương trình mặt cầu \((S)\) để mô tả ranh giới bên ngoài của vùng phủ sóng trong không gian là \({\left( {x - 1} \right)^2} + {\left( {y - 3} \right)^2} + {\left( {z - 7} \right)^2} = 9\).
b) Ta có \(IB = \sqrt {{{\left( {5 - 1} \right)}^2} + {{\left( {6 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}} = 5 > 3\).
Do đó người dùng điện thoại ở vị trí có toạ độ \(B\left( {5;6;7} \right)\) thì không thể sử dụng dịch vụ của trạm thu phát sóng đó.
c) Có \(IA = \sqrt {{{\left( {2 - 1} \right)}^2} + {{\left( {2 - 3} \right)}^2} + {{\left( {7 - 7} \right)}^2}} = \sqrt 2 < 3\).
Suy ra A nằm trong mặt cầu (S).
d) Người dùng điện thoại ở vị trí có tọa độ \(A\left( {2;2;7} \right)\) thì có thể sử dụng dịch vụ của trạm thu phát sóng đó.
Đáp án: a) Sai; b) Đúng; c) Sai; d) Đúng.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vùng phủ sáng chính là hình cầu tâm I bán kính R = 4000.
Khi đó tọa độ điểm H chính là giao điểm của đường thẳng ID và mặt cầu tâm I, bán kính R.
Ta có phương trình mặt cầu (S) là \({\left( {x - 21} \right)^2} + {\left( {y - 35} \right)^2} + {\left( {z - 50} \right)^2} = {4000^2}\).
Đường thẳng ID đi qua điểm I(21; 35; 50) và nhận \(\overrightarrow {ID} = \left( {5100;623; - 50} \right)\) làm vectơ chỉ phương có phương trình là \(\left\{ \begin{array}{l}x = 21 + 5100t\\y = 35 + 623t\\z = 50 - 50t\end{array} \right.\).
Vì H ID \( \Rightarrow H\left( {21 + 5100t;35 + 623t;50 - 50t} \right)\).
Mà H (S) nên \({\left( {5100t} \right)^2} + {\left( {623t} \right)^2} + {\left( { - 50t} \right)^2} = {4000^2}\)\( \Leftrightarrow 26400629{t^2} = {4000^2}\)\( \Leftrightarrow t \approx \pm 0,78\).
Với \(t \approx - 0,78\)\( \Rightarrow H\left( { - 3957; - 450,94;89} \right)\) và \(\overrightarrow {IH} = \left( { - 3978; - 485,94;39} \right)\).
Khi đó \(\overrightarrow {ID} = - \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) ngược hướng.
Vậy H không thuộc đoạn thẳng ID.
Với \(t \approx 0,78\)\( \Rightarrow H\left( {3900;520,94;11} \right)\) và \(\overrightarrow {IH} = \left( {3978;485,94; - 39} \right)\).
Khi đó \(\overrightarrow {ID} = \frac{{50}}{{39}}\overrightarrow {IH} \) nên hai vectơ \(\overrightarrow {ID} ,\overrightarrow {IH} \) cùng hướng.
Vậy H thuộc đoạn thẳng ID.
Vậy ví trí cuối cùng trên đoạn ID sao cho người đi biển còn có thể nhìn thấy được ánh sáng từ ngọn hải đăng là điểm \(H\left( {3900;520,94;11} \right)\) có cao độ là 11.
Trả lời: 11.
Lời giải
a) \(M\left( {1;0;0} \right)\).
b) \(N\left( {0;0;1} \right)\).
c) Mặt phẳng (DMN) có phương trình là \(\frac{x}{1} + \frac{y}{2} + \frac{z}{1} = 1 \Leftrightarrow 2x + y + 2z - 2 = 0\).
d) Ta có \(C'\left( {2;2;2} \right)\).
Khi đó \(d\left( {C',\left( {DMN} \right)} \right) = \frac{{\left| {2.2 + 2 + 2.2 - 2} \right|}}{{\sqrt {{2^2} + {1^2} + {2^2}} }} = \frac{8}{3}\).
Đáp án: a) Đúng; b) Sai; c) Đúng; d) Đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
\({\vec u_2} = \left( {1; - 2;1} \right)\).
\({\vec u_1} = \left( { - 1;2; - 1} \right)\).
\({\vec u_4} = \left( {3;2;4} \right)\).
\({\vec u_3} = \left( {3; - 2;4} \right)\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 9\).
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 3\).
\({\left( {x - 1} \right)^2} + {\left( {y + 2} \right)^2} + {\left( {z - 3} \right)^2} = 3\).
\({\left( {x + 1} \right)^2} + {\left( {y - 2} \right)^2} + {\left( {z + 3} \right)^2} = 9\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
