Câu hỏi:

26/10/2025 134 Lưu

bao nhiêu giá trị nguyên của tham số \(m\) để hàm số \(y = \frac{{x + {m^2}}}{{x + 4}}\) đồng biến trên từng khoảng xác định của nó.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Tập xác định: \(D = \mathbb{R}\backslash \left\{ { - 4} \right\}.\)

Ta có  \(y' = \frac{{4 - {m^2}}}{{{{\left( {x + 4} \right)}^2}}}.\)

Hàm số đồng biến trên từng khoảng xác định khi và chỉ khi

\(y' > 0\;\forall x \in D \Leftrightarrow \frac{{4 - {m^2}}}{{{{\left( {x + 4} \right)}^2}}} > 0\;\forall x \ne - 4 \Leftrightarrow - 2 < m < 2.\)

\(m \in \mathbb{Z} \Rightarrow m \in \left\{ { - 1;0;1} \right\}\)

Vậy có 3 giá trị m  nguyên để bài toán thỏa mãn.

Trả lời: 3.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Ta có \(y = \frac{{{x^2} + 3x + 3}}{{x + 2}}\) suy ra \(y' = \frac{{\left( {2x + 3} \right)\left( {x + 2} \right) - \left( {{x^2} + 3x + 3} \right)}}{{{{\left( {x + 2} \right)}^2}}} = \frac{{{x^2} + 4x + 3}}{{{{\left( {x + 2} \right)}^2}}}\).

b)  \(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = - 3\\x = - 1\end{array} \right.\)\( \Rightarrow y\left( { - 3} \right) = - 3\); \(y\left( { - 1} \right) = 1\).

Suy ra \(A\left( { - 3\,;\, - 3} \right)\)\(B\left( { - 1\,;\,1} \right)\)

Do \({x_A}.{x_B} = 3 > 0\) nên \(A\)\(B\) nằm ở cùng một phía của trục tung.

c) Ta có \(\overrightarrow {AB} = \left( {2\,;\,4} \right)\).

Suy ra đường thẳng \(AB\) có phương trình là \( - 2\left( {x + 1} \right) + \left( {y - 1} \right) = 0\)\( \Leftrightarrow y = 2x + 3\).

d) Đường thẳng \(\Delta \) có phương trình là \(x + 2y + 4 = 0\) nên \(\Delta \) có vectơ pháp tuyến \(\overrightarrow {{n_\Delta }} = \left( {1\,;\,2} \right)\).

\(\overrightarrow {AB} = \left( {2\,;\,4} \right)\)

Suy ra \(\overrightarrow {{n_\Delta }} \)\(\overrightarrow {AB} \) cùng phương với nhau. Do đó \(AB \bot \Delta \).

Ta có \(I\left( { - 2\,;\, - 1} \right)\) là trung điểm của đoạn thẳng \(AB\)\(I \in \Delta \).

Vậy \(A\)\(B\) đối xứng nhau qua đường thẳng \(\Delta \).

Đáp án: a) Đúng;   b) Sai; c) Sai; d) Đúng.

Lời giải

Dựa vào đồ thị hàm số ta có

a)  Hàm số \(y = f(x)\) đồng biến trên các khoảng \(( - \infty ; - 1)\)\((1; + \infty ).\)

b) Giá trị cực đại là y = 3, giá trị cực tiểu là y = –1.

Do đó tổng giá trị cực đại và giá trị cực tiểu của hàm số đã cho là 3 – 1 = 2.

c)  Hàm số \(y = f(x)\)có hai cực trị là \(x = \pm 1.\)

d) Gọi \[d:y = {\rm{ax}} + b\] là đường thẳng qua hai điểm cực trị \[A( - 1;3),B(1; - 1).\]

\[A,B \in d \Rightarrow \left\{ \begin{array}{l} - a + b = 3\\a + b = - 1\end{array} \right. \Rightarrow \left\{ \begin{array}{l}a = - 2\\b = 1\end{array} \right. \Rightarrow d:y = - 2x + 1\].

Đáp án: a) Sai;   b) Đúng; c) Đúng; d) Sai.

Câu 3

A. \[\left( {0;2} \right).\] 

B. \[\left( {0; + \infty } \right).\]                          

C. \[\left( { - 2;0} \right).\]                           
D. \[\left( {2; + \infty } \right).\]

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 4

A. \[1\].                            
B. \[2\].                             
C. \[3\].                                 
D. \[4\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP