Câu hỏi:

26/10/2025 33 Lưu

Số lượng đặt bàn của một nhà hàng được cho bởi bảng sau:

Số lượt đặt bàn

Tần số

Tần số tích lũy

[1; 6)

14

14

[6; 11)

30

44

[11; 16)

25

69

[16; 21)

18

87

[21; 26)

5

92

Hãy tìm khoảng tứ phân vị của mẫu số liệu ghép nhóm cho bởi bảng trên.

A. \({\Delta _Q} = \frac{{11}}{6}\).                       

B. \[{\Delta _Q}\; = \frac{{17}}{2}\]. 
C. \({\Delta _Q} = \frac{5}{2}\).                   
D. \({\Delta _Q} = \frac{{17}}{6}\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Cỡ mẫu \[n = 14 + 30 + 25 + 18 + 5 = 92 \Rightarrow \frac{n}{4} = 23\]

Tần số tích lũy của nhóm 1 là \(14 < 23\) và tần số tích lũy của nhóm 2 là \(44 > 23\)

Vậy nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng \(\frac{n}{4} = 23\).

Nhóm 2 có đầu mút trái \(s = 6\), độ dài \(h = 11 - 6 = 5\), tần số \({n_2} = 30\); tần số tích lũy của nhóm 1 là \(c{f_1} = 14\).

Do đó, tứ phân vị thứ nhất của mẫu số liệu ghép nhóm là:

\({Q_1} = s + \left( {\frac{{23 - c{f_1}}}{{{n_2}}}} \right) \cdot h = 6 + \left( {\frac{{23 - 14}}{{30}}} \right) \cdot 5 = \frac{{15}}{2}\).

Ta có \(\frac{{3n}}{4} = 69\) nên nhóm 3 là nhóm có tần số tích lũy lớn hơn hoặc bằng \(\frac{{3n}}{4}\).

Nhóm 3 có đầu mút trái \({\rm{t}} = 11\), độ dài \(l = 16 - 11 = 5\), tần số \({{\rm{n}}_3} = 25\); tần số tích lũy của nhóm 3 là \(c{f_2} = 44\)

Tứ phân vị thứ ba \({Q_3}\) của mẫu số liệu đã cho là

\({Q_3} = t + \left( {\frac{{69 - c{f_2}}}{{{n_3}}}} \right) \cdot l = 11 + \left( {\frac{{69 - 44}}{{25}}} \right) \cdot 5 = 16\).

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q}\; = {Q_3}--{Q_1}\; = 16--\frac{{15}}{2} = \frac{{17}}{2}\]. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[R = 40 - 10 = 30\].

b) \(n = 60\).

c) Ta có \(\frac{n}{4} = 15\). Nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15 nên nhóm này chứa tứ phân vị thứ nhất.

\({Q_1} = 10 + \frac{{15 - 0}}{{15}}.5 = 15\). Do đó \({Q_1} = 15\).

d) Có \(\frac{{3n}}{4} = 45\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45 nên nhóm này chứa tứ phân vị thứ ba.

Ta có tứ phân vị thứ ba là \[{Q_3} = 25 + \left( {\frac{{45 - 43}}{{10}}} \right).5 = 26\].

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[{\Delta _Q} = {Q_3} - {Q_1} = 26 - 15 = 9\].

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Câu 2

A. \({R_1} = 30\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 25\,\,\left( {{\rm{cm}}} \right)\).                                                                   
B. \({R_1} = 30\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 30\,\,\left( {{\rm{cm}}} \right)\).
C. \({R_1} = 25\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 25\,\,\left( {{\rm{cm}}} \right)\).                                                                   
D. \({R_1} = 12\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 9\,\,\left( {{\rm{cm}}} \right)\).

Lời giải

Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp \(12A\)là: \({R_1} = 180 - 150 = 30\) (cm).

Trong mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp \(12B\), khoảng đầu tiên chứa dữ liệu là [155; 160) và khoảng cuối cùng chứa dữ liệu là [175; 180).

Khoảng biến thiên của mẫu số liệu ghép nhóm về chiều cao của các bạn học sinh nữ lớp \(12B\)là: \({R_2} = 180 - 155 = 25\) (cm). Chọn A.

Câu 5

A. \[{\Delta _Q}\; = {Q_2} - {Q_1}\].                    
B. \[{\Delta _Q}\; = {Q_3} - {Q_1}\].                                        
C. \[{\Delta _Q}\; = {Q_2} - {Q_3}\].                                        
D. \[{\Delta _Q}\; = {Q_1} - {Q_3}\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP