Điều tra về khối lượng \[27\] củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:
Tần số
\(\left[ {74;\;80} \right)\)
\(4\)
\(\left[ {80;\;86} \right)\)
\(6\)
\(\left[ {86;\;92} \right)\)
\(3\)
\(\left[ {92;\;98} \right)\)
\(4\)
\(\left[ {98;\;104} \right)\)
\(3\)
\(\left[ {104;\;110} \right)\)
\(7\)
\[n = 27\]
Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là
Điều tra về khối lượng \[27\] củ khoai tây (đơn vị: gam) thu hoạch tại nông trường, ta có kết quả sau:
|
Tần số |
|
|
\(\left[ {74;\;80} \right)\) |
\(4\) |
|
\(\left[ {80;\;86} \right)\) |
\(6\) |
|
\(\left[ {86;\;92} \right)\) |
\(3\) |
|
\(\left[ {92;\;98} \right)\) |
\(4\) |
|
\(\left[ {98;\;104} \right)\) |
\(3\) |
|
\(\left[ {104;\;110} \right)\) |
\(7\) |
|
|
\[n = 27\] |
Khoảng biến thiên và khoảng tứ phân vị của mẫu số liệu ghép nhóm trên lần lượt là
A. \(36;\,\,21,45\).
Quảng cáo
Trả lời:
Khoảng biến thiên của mẫu số liệu ghép nhóm đó là : \(R = 110 - 74 = 36\)(gam).
Số phần tử của mẫu là \[n = 27\].
|
Nhóm |
Tần số |
Tần số tích lũy |
|
\(\left[ {74;\;80} \right)\) |
\(4\) |
4 |
|
\(\left[ {80;\;86} \right)\) |
\(6\) |
10 |
|
\(\left[ {86;\;92} \right)\) |
\(3\) |
13 |
|
\(\left[ {92;\;98} \right)\) |
\(4\) |
17 |
|
\(\left[ {98;\;104} \right)\) |
\(3\) |
20 |
|
\(\left[ {104;\;110} \right)\) |
\(7\) |
27 |
|
|
\[n = 27\] |
|
Có \(\frac{n}{4} = \frac{{27}}{4} = 6,75\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 6,75 nên nhóm này chứa tứ phân vị thứ nhất.
Áp dụng công thức, ta có tứ phân vị thứ nhất là:\[{Q_1} = 80 + \left( {\frac{{6,75 - 4}}{6}} \right).6 = 82,75\](gam).
Có \(\frac{{3n}}{4} = 20,25\). Nhóm 6 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20,25 nên nhóm này chứa tứ phân vị thứ ba.
Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 104 + \left( {\frac{{20,25 - 20}}{7}} \right).6 = \frac{{1459}}{{14}} \approx 104,2\](gam).
Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:
\[{\Delta _Q} = {Q_3} - {Q_1} \approx 104,2 - 82,75 = 21,45\](gam). Chọn A.
Hot: 1000+ Đề thi giữa kì 2 file word cấu trúc mới 2026 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[R = 40 - 10 = 30\].
b) \(n = 60\).
c) Ta có \(\frac{n}{4} = 15\). Nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15 nên nhóm này chứa tứ phân vị thứ nhất.
\({Q_1} = 10 + \frac{{15 - 0}}{{15}}.5 = 15\). Do đó \({Q_1} = 15\).
d) Có \(\frac{{3n}}{4} = 45\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45 nên nhóm này chứa tứ phân vị thứ ba.
Ta có tứ phân vị thứ ba là \[{Q_3} = 25 + \left( {\frac{{45 - 43}}{{10}}} \right).5 = 26\].
Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[{\Delta _Q} = {Q_3} - {Q_1} = 26 - 15 = 9\].
Đáp án: a) Đúng; b) Đúng; c) Đúng; d) Sai.
Câu 2
Lời giải
Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q}\; = {Q_3}--{Q_1}\;\]. Chọn B.
Câu 3
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
A. \({\Delta _Q} = \frac{{11}}{6}\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

