Câu hỏi:

26/10/2025 101 Lưu

Gọi \({Q_1},{Q_2},{Q_3}\) là tứ phân vị của một mẫu số liệu ghép nhóm. Khi đó khoảng tứ phân vị \({\Delta _Q}\) của mẫu số liệu trên được xác định bởi công thức

A. \[{\Delta _Q}\; = {Q_2} - {Q_1}\].                    
B. \[{\Delta _Q}\; = {Q_3} - {Q_1}\].                                        
C. \[{\Delta _Q}\; = {Q_2} - {Q_3}\].                                        
D. \[{\Delta _Q}\; = {Q_1} - {Q_3}\].

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khoảng tứ phân vị của mẫu số liệu ghép nhóm là: \[{\Delta _Q}\; = {Q_3}--{Q_1}\;\]. Chọn B.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a) Khoảng biến thiên của mẫu số liệu ghép nhóm trên là \[R = 40 - 10 = 30\].

b) \(n = 60\).

c) Ta có \(\frac{n}{4} = 15\). Nhóm 1 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 15 nên nhóm này chứa tứ phân vị thứ nhất.

\({Q_1} = 10 + \frac{{15 - 0}}{{15}}.5 = 15\). Do đó \({Q_1} = 15\).

d) Có \(\frac{{3n}}{4} = 45\). Nhóm 4 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 45 nên nhóm này chứa tứ phân vị thứ ba.

Ta có tứ phân vị thứ ba là \[{Q_3} = 25 + \left( {\frac{{45 - 43}}{{10}}} \right).5 = 26\].

Khoảng tứ phân vị của mẫu số liệu ghép nhóm trên là \[{\Delta _Q} = {Q_3} - {Q_1} = 26 - 15 = 9\].

Đáp án: a) Đúng;   b) Đúng;   c) Đúng;   d) Sai.

Lời giải

Khoảng biến thiên của mẫu số liệu ghép nhóm đó là : \(R = 110 - 74 = 36\)(gam).

Số phần tử của mẫu là \[n = 27\].

Nhóm

Tần số

Tần số tích lũy

\(\left[ {74;\;80} \right)\)

\(4\)

4

\(\left[ {80;\;86} \right)\)

\(6\)

10

\(\left[ {86;\;92} \right)\)

\(3\)

13

\(\left[ {92;\;98} \right)\)

\(4\)

17

\(\left[ {98;\;104} \right)\)

\(3\)

20

\(\left[ {104;\;110} \right)\)

\(7\)

27

 

\[n = 27\]

 

 

\(\frac{n}{4} = \frac{{27}}{4} = 6,75\). Nhóm 2 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 6,75 nên nhóm này chứa tứ phân vị thứ nhất.

Áp dụng công thức, ta có tứ phân vị thứ nhất là:\[{Q_1} = 80 + \left( {\frac{{6,75 - 4}}{6}} \right).6 = 82,75\](gam).

\(\frac{{3n}}{4} = 20,25\). Nhóm 6 là nhóm đầu tiên có tần số tích lũy lớn hơn hoặc bằng 20,25 nên nhóm này chứa tứ phân vị thứ ba.

Áp dụng công thức, ta có tứ phân vị thứ ba là: \[{Q_3} = 104 + \left( {\frac{{20,25 - 20}}{7}} \right).6 = \frac{{1459}}{{14}} \approx 104,2\](gam).

Vậy khoảng tứ phân vị của mẫu số liệu ghép nhóm đã cho là:

\[{\Delta _Q} = {Q_3} - {Q_1} \approx 104,2 - 82,75 = 21,45\](gam). Chọn A.

Câu 3

A. \({R_1} = 30\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 25\,\,\left( {{\rm{cm}}} \right)\).                                                                   
B. \({R_1} = 30\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 30\,\,\left( {{\rm{cm}}} \right)\).
C. \({R_1} = 25\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 25\,\,\left( {{\rm{cm}}} \right)\).                                                                   
D. \({R_1} = 12\,\,\left( {{\rm{cm}}} \right)\,;\,\,{R_2} = 9\,\,\left( {{\rm{cm}}} \right)\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP