Câu hỏi:

27/10/2025 38 Lưu

Trong các mệnh đề sau, mệnh đề nào đúng?

A. Hai đường thẳng phân biệt không song song thì cheo nhau.              
B. Hai đường thẳng lần lượt nằm trên hai mặt phẳng phân biệt thì chéo nhau.              
C. Hai đường thẳng chéo nhau thì không có điểm chung.              
D. Hai đường thẳng không có điểm chung thì chéo nhau.

Quảng cáo

Trả lời:

verified Giải bởi Vietjack
Chọn C

Đáp án C đúng, vì hai đường thẳng chéo nhau là hai đường thẳng không cùng nằm trong mặt phẳng nên chúng không có điểm chung.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Chọn A

Gọi \({u_1}\)là số tiền phải trả cho \[10\]số điện đầu tiên. \({u_1}\)=10. 800= 8000 (đồng)

\({u_2}\)là số tiền phải trả cho các số điện từ \[11\]đến \[20\]: \({u_2} = {u_1}(1 + 0,025)\)

\({u_{34}}\)là số tiền phải trả cho các số điện từ \[331\]đến \[340\]: \({u_{34}} = {u_1}{(1 + 0,025)^{33}}\)

Số tiền phải trả cho \[340\]số điện đầu tiên là: \({S_1} = {u_1}.\frac{{1 - {{\left( {1 + 0,025} \right)}^{34}}}}{{1 - \left( {1 + 0,025} \right)}} = 420903,08\)

Số tiền phỉ trả cho các số điện từ \[341\]đến \[347\]là: \({S_2} = 7.800{(1 + 0,025)^{34}} = 12965,80\)

Vậy tháng \[1\]gia đình ông A phải trả số tiền là: \(S = {S_1} + {S_2} = 433868,89\)(đồng).

Lời giải

 Cho hình chóp S.ABC có hai điểm M,N lần lượt thuộc hai cạnh SA;SB và O là điểm nằm trong tam giác ABC. Xác định giao điểm của đường thẳng SO và mặt phẳng (CMN) (ảnh 1)

Chọn mặt phẳng \(\left( {SCI} \right)\) chứa \(SO\)

Ta có \(\left\{ \begin{array}{l}J \in MN \subset \left( {MNC} \right)\\J \in SI \subset \left( {SIC} \right)\end{array} \right.\) \( \Rightarrow J \in \left( {SIC} \right) \cap \left( {MNC} \right)\) \( \Rightarrow CJ = \left( {SIC} \right) \cap \left( {MNC} \right)\)

Gọi \(K\) là giao điểm của \(JC\) và \(SO\) trong mặt phẳng \(\left( {SCI} \right)\).

\( \Rightarrow \left\{ \begin{array}{l}K \in SO\\K \in CJ \subset \left( {CMN} \right)\end{array} \right.\)\( \Rightarrow K = SO \cap \left( {CMN} \right)\).