Câu hỏi:

27/10/2025 74 Lưu

Học sinh An tiến hành làm một thí nghiệm trên một con lắc đơn. Tại vị trí cân bằng, An tác động một lực lên con lắc theo phương ngang. Từ các kết quả thí nghiệm cho thấy, An tính được con lắc dao động điều hòa quanh vị trí cân bằng theo phương trình \(s = 2\sqrt 2 \cos \left( {7t + \frac{\pi }{3}} \right)\) với \(s\)(\(cm\)) là độ dài cung quét của con lắc từ một vị trí bất kì tại thời điểm \(t\) (giây) đến vị trí cân bằng. Con lắc đi qua vị trí cân bằng bao nhiêu lần trong khoảng thời gian từ \(0\)đến \(30\) giây?

Học sinh An tiến hành làm một thí nghiệm trên một con lắc đơn. Tại vị trí cân bằng, An tác động một lực lên con lắc theo phương ngang. Từ các kết quả thí nghiệm cho thấy, An tính được con lắc dao động điều hòa quanh vị trí cân bằng theo phương trình (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Khi vật đi qua vị trí cân bằng thì \(s = 0\), ta có:

\(2\sqrt 2 \cos \left( {7t + \frac{\pi }{3}} \right) = 0\)\( \Leftrightarrow \cos \left( {7t + \frac{\pi }{3}} \right) = 0\)\( \Leftrightarrow 7t + \frac{\pi }{3} = \frac{\pi }{2} + k\pi \), \(k \in \mathbb{Z}\)

\( \Leftrightarrow 7t = \frac{\pi }{6} + k\pi \)

\( \Leftrightarrow t = \frac{\pi }{{42}} + \frac{{k\pi }}{7}\).

Trong khoảng thời gian từ \(0\)đến \(30\) giây, ta có:

\(0 \le \frac{\pi }{{42}} + \frac{{k\pi }}{7} \le 30\)\( \Leftrightarrow  - \frac{1}{6} \le k \le \frac{{210}}{\pi } - \frac{1}{6}\)

Vì kk0;1;2;3;4;5;6;7;.....;66

Vậy khoảng thời gian từ \(0\)đến \(30\) giây, vật đi qua vị trí cân bằng \(67\) lần.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta thấy ở phương án 1: mức lương ở mỗi năm lập thành một cấp số cộng, với

\({u_1} = 45\)(triệu đồng), \(n = 10\)(năm), công sai \(d = 3\)(triệu đồng)

Vậy \({S_{10}} = \frac{n}{2}\left[ {2{u_1} + (n - 1)d} \right] = 5.\left[ {2.45 + 9.3} \right] = 585\,\)triệu đồng.

Ở phương án 2: mức lương ở mỗi năm lập thành một cấp số cộng, với

\({u_1} = 7\)(triệu đồng), \(n = 40\) (quý),công sai \(d = 0,5\)(triệu đồng)

Vậy \({S_{10}} = \frac{n}{2}\left[ {2{u_1} + (n - 1)d} \right] = 20.\left[ {2.7 + 39.0,5} \right] = \,670\,\)triệu đồng

Lời giải

Số tiền du khách đặt cược trong mỗi lần chơi là một cấp số nhân có \({u_1} = 100\,000\) và công bội \(q = 2.\) Du khách thua trong \(5\) lần chơi đầu tiên nên tổng số tiền thua là

\({S_5} = {u_1} + {u_2} + ... + {u_5} = \frac{{{u_1}\left( {1 - {2^5}} \right)}}{{1 - 2}} = 3100000\)đồng

Số tiền mà du khách đã đặt cược trong lần thứ 6 là\({u_6} = {u_1}.{q^5} = 3200000\) đồng. Do số tiền đã nhận khi thắng bằng hai lần tiền đặt cược nên số tiền đã thắng ở lần chơi này là \(2.3200000 - 3200000 = 3200000\).

Ta có \(3200000 - 3100000 = 100000 > 0\) nên du khách thắng 100 nghìn đồng sau 6 lần chơi.

Câu 6

A. \(2\)                        
B. \(4\)                        
C. \(3\)       
D. \(1\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP