Cho tứ diện đều \(ABCD\) có cạnh bằng \(2\). Gọi \(G\) là trọng tâm tam giác \(ABC\). Cắt tứ diện bởi mặt phẳng \((GCD)\). Tính diện tích của thiết diện. (làm tròn đến hàng phần mười)
Cho tứ diện đều \(ABCD\) có cạnh bằng \(2\). Gọi \(G\) là trọng tâm tam giác \(ABC\). Cắt tứ diện bởi mặt phẳng \((GCD)\). Tính diện tích của thiết diện. (làm tròn đến hàng phần mười)
Quảng cáo
Trả lời:

Gọi \(M\) là trung điểm \(AB\).
Khi đó cắt tứ diện bởi mặt phẳng \((GCD)\) ta được thiết diện là \(\Delta MCD\).
Ta có tứ diện đều \(ABCD\) có cạnh bằng \(2 \Rightarrow MC = MD = \frac{{2\sqrt 3 }}{2} = \sqrt 3 \); \(CD = 2\).
Khi đó nửa chu vi \(\Delta MCD\): \(p = \frac{{\sqrt 3 + \sqrt 3 + 2}}{2} = 1 + \sqrt 3 \).
Nên \({S_{\Delta MCD}} = \sqrt {p(p - MC)(p - MD)(p - CD)} = \sqrt 2 = 1,4\)
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Chọn hệ trục tọa độ trong mặt phẳng tọa độ \(Oxy\)như sau

Trong đó trục \[Ox\]mô tà là mặt nước thủy triều của sông; trục Oy là khoảng cách giửa đỉnh cầu và mặt nước thủy triều của sông.
Xét điểm \[M\left( {x;y} \right)\]nằm trên cung\[AB\], khoảng cách từ điểm \[M\left( {x;y} \right)\]đến mặt nước tương ứng với giá trị tung độ \[y\]của điểm \[M\].
Xét phương trình \(\frac{8}{{\sqrt 3 }}\cos \frac{x}{{12}} + 2 = 5,2 + 0,8 \Leftrightarrow \cos \frac{x}{{12}} = \frac{{\sqrt 3 }}{2}\)
Vì \(x \in \left[ { - 6\pi ;6\pi } \right] \Rightarrow \frac{x}{{12}} \in \left[ { - \frac{\pi }{2};\frac{\pi }{2}} \right]\)
Nên \(\cos \frac{x}{{12}} = \frac{{\sqrt 3 }}{2} \Leftrightarrow \frac{x}{{12}} = \pm \frac{\pi }{6} \Leftrightarrow x = \pm 2\pi hay\left| x \right| = 2\pi \)
Để sà lan có thể đi qua được gầm cầu đúng qui định thì bề rộng khối hàng là
\(2\left| x \right| = 4\pi = 4x3,14 = 12,56 \approx 12,6\)
Lời giải
Theo cách nói của An và xem như An thua tất cả các ván bài. Khi đó, số kẹo thua mỗi ván lập thành cấp số cộng với số hạng đầu \[{u_1} = 10\] và công sai \[d = 10\].
Giả sử sau \[n\] ván thì An thua hết kẹo.
Khi đó: \[{S_n} = {u_1} + {u_2} + ... + {u_n} = 625\]
\[ \Leftrightarrow n.{u_1} + \frac{{n\left( {n - 1} \right)}}{2}d = 625 \Leftrightarrow 10n + \frac{{n\left( {n - 1} \right)}}{2}.10 = 625 \Leftrightarrow 5{n^2} + 5n - 625 = 0 \Leftrightarrow \left[ \begin{array}{l}n \approx 10,7\\n \approx - 11,7\end{array} \right.\] \[ \Leftrightarrow n \approx 10,7\]
Vậy, An nói đúng.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 4
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
