Câu hỏi:

27/10/2025 18 Lưu

PHẦN II. Câu trắc nghiệm đúng sai. Thí sinh trả lời từ câu 1 đến câu 2. Trong mỗi ý a), b), c), d) ở mỗi câu, thí sinh chọn đúng hoặc sai.

Cho hàm số \(y = 2\sin \left( {\frac{{5\pi }}{2} - \frac{{\pi x}}{6}} \right) + 11\). Xét tính đúng sai của các khẳng định sau.

              a) Hàm số tập xác định là \(\mathcal{D} = \mathbb{R}\).                                                             

              b) Hàm số là hàm số chẵn.

              c) Hàm số tuần hoàn với chu kì \(T = 12\pi \).    

              d) Giá trị lớn nhất của hàm số là \(13\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

a)

Đ

b)

Đ

c)

S

d)

Đ

 

(Đúng) Hàm số tập xác định là \(\mathcal{D} = \mathbb{R}\)

(Vì): Đún. Vì hàm số đã cho là hàm cơ bản nên có tập xác định là \(\mathcal{D} = \mathbb{R}\).

(Sai) Hàm số tuần hoàn với chu kì \(T = 12\pi \)

(Vì): Vì hàm số đã cho tuần hoàn với chu kì \(T = \frac{{2\pi }}{{\left| {\frac{\pi }{6}} \right|}} = 12\).

(Đúng) Hàm số là hàm số chẵn

(Vì): Vì \(y = f(x) = 2\sin \left( {\frac{{5\pi }}{2} - \frac{{\pi x}}{6}} \right) + 11 = 2\sin \left( {2\pi  + \frac{\pi }{2} - \frac{{\pi x}}{6}} \right) + 11 = 2\cos \left( {\frac{{\pi x}}{6}} \right) + 11\).

Tập xác định \(\mathcal{D} = \mathbb{R}\).

Với \(x \in \mathcal{D} \Rightarrow  - x \in \mathcal{D}\).

Ta có \(f( - x) = 2\cos \left( {\frac{{\pi ( - x)}}{6}} \right) + 11 = 2\cos \left( {\frac{{\pi x}}{6}} \right) + 11 = f(x)\).

Vậy \(f(x) = f( - x)\) nên hàm số đã cho là hàm số chẵn.

(Đúng) Giá trị lớn nhất của hàm số là \(13\)

(Vì): Vì

\( - 1 \le \cos \left( {\frac{{\pi x}}{6}} \right) \le 1 \Leftrightarrow  - 2 \le 2\cos \left( {\frac{{\pi x}}{6}} \right) \le 2 \Leftrightarrow 9 \le 2\cos \left( {\frac{{\pi x}}{6}} \right) + 11 \le 13 \Leftrightarrow 9 \le y \le 13.\)

Vậy hàm số có giá trị lớn nhất bằng \(13\).

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Đ

b)

S

c)

Đ

d)

S


(Sai) Có đúng \(2\) mặt phẳng phân biệt chứa điểm \(O\) trong các mặt phẳng được tạo từ \(5\) điểm \(S,A,B,C,D\)
(Vì): Vì các mặt phẳng thỏa mãn yêu cầu chứa điểm \(O\) gồm \((SAC);(SBD);(ABCD)\).
(Đúng) Giao tuyến của hai mặt phẳng \((MBD)\) và \((SAC)\) là đường thẳng \(OM\)
(Vì): Vì ta có \(\left\{ {\begin{array}{*{20}{l}}{M \in (MBD)({\rm{v\`i}}M \in SA)}\end{array}} \right. \Rightarrow M \in (MBD) \cap (SAC)(1)\).
Tương tự \(\left\{ {\begin{array}{*{20}{l}}{O \in (MBD)({\rm{v\`i}}O \in BD)({\rm{v\`i}}O \in AC)}\end{array}} \right. \Rightarrow O \in (MBD) \cap (SAC)(2)\).
Từ \((1)\) và \((2)\) suy ra \(OM = (SAC) \cap (MBD)\).
(Sai) Giao tuyến của hai mặt phẳng \((DMN)\) và \((SAC)\) là đường thẳng \(ME\) với \(E\) là trung điểm của đoạn thẳng \(OC\)
(Vì): Vì ta có \(\left\{ {\begin{array}{*{20}{l}}{M \in (DMN)}\\{M \in (SAC)({\rm{v\`i}}M \in SA)}\end{array}} \right. \Rightarrow M \in (DMN) \cap (SAC)(3)\).
Trong mặt phẳng \((ABCD)\) gọi \(E = DN \cap AC\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{E \in (DMN)({\rm{v\`i}}E \in DN)}\\{E \in (SAC)({\rm{v\`i}}E \in AC)}\end{array}} \right. \Rightarrow E \in (DMN) \cap (SAC)(4)\).
Từ \((3)\) và \((4)\) suy ra \(ME = (DMN) \cap (SAC)\).
Tam giác \(BCD\) có \(E = DN \cap OC\) và \(DN,OC\) là hai đường trung tuyến.
Suy ra \(E\) là trọng tâm của tam giác \(BCD\).
(Đúng) Giao điểm giữa đường thẳng \(CM\) và mặt phẳng \((SBD)\) là trọng tâm tam giác \(SAC\)
(Vì): Vì trong mặt phẳng \((SAC)\) gọi \(F = CM \cap SO\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{F \in CM}\\{F \in (SAC)({\rm{v\`i}}F \in SO \subset (SAC))}\end{array}} \right. \Rightarrow F = CM \cap (SAC)\).
Tam giác \(SAC\) có \(F = CM \cap SO\) và \(SO,CM\) là hai đường trung tuyến.
Suy ra \(F\) là trọng tâm của tam giác \(SAC\).

Câu 6

A. \({u_n} = {u_1} - nd\).                             
B. \({u_n} = {u_1} + nd\).              
C. \({u_n} = {u_1} + \left( {n + 1} \right)d\).     
D. \({u_n} = {u_1} + \left( {n - 1} \right)d\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP