Câu hỏi:

27/10/2025 465 Lưu

Số giờ ánh sáng mặt trời của một thành phố A ở vĩ độ 400 Bắc trong ngày thứ \(t\) của một năm không nhuận được cho bởi hàm số \(d\left( t \right) = 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12\) với \(t \in {\mathbb{N}^*}\)\(0 < t \le 365\). Hỏi trong năm không nhuận thì thành phố A có bao nhiêu ngày có 12 giờ ánh sáng mặt trời?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Thành phố A có 12 giờ ánh sáng mặt trời nên \[d\left( t \right) = 12\]

\[ \Leftrightarrow 3\sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] + 12 = 12\]\[ \Leftrightarrow \sin \left[ {\frac{\pi }{{182}}\left( {t - 80} \right)} \right] = 0\]

\[ \Leftrightarrow \frac{\pi }{{182}}\left( {t - 80} \right) = k\pi ,\,\,k \in \mathbb{Z}\]\( \Leftrightarrow t = 80 + 182k\)

Mà \(0 < t \le 365 \Rightarrow 0 < 80 + 182k \le 365 \Leftrightarrow  - \frac{{40}}{{91}} < k \le \frac{{285}}{{182}}\)

Do \(k \in \mathbb{Z} \Rightarrow \left[ \begin{array}{l}k = 0\\k = 1\end{array} \right.\)

Với \(k = 0 \Rightarrow t = 80\)

Với \(k = 1 \Rightarrow t = 262\)

Vậy có 2 ngày để thành phố A có 12 giờ ánh sáng mặt trời.

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ngày thứ nhất Aladin ước được \({u_1} = 4\) điều.

Ngày thứ hai Aladin ước \({u_2} = 2{u_1} = 4.2\) điều.

Ngày thứ ba Aladin ước \({u_3} = 2{u_2} = {4.2^2}\) điều.

Ngày thứ tư Aladin ước \({u_4} = 2{u_3} = {4.2^3}\) điều.

Ngày thứ năm Aladin ước \({u_5} = 2{u_4} = {4.2^4}\) điều.

Ngày thứ n Aladin ước \({u_n} = 2{u_{n - 1}} = {4.2^{n - 1}}\) điều.

Vậy \({u_1},\,{u_2},...,{u_n},...\) lập thành 1 cấp số nhân với \({u_1} = 4\) và công bội \(q = 2.\)

Vậy sau \(11\) ngày Aladin đã ước: \({S_5} = {u_1} + {u_2} + ... + {u_{11}} = 4\left( {\frac{{1 - {2^{10}}}}{{1 - 2}}} \right) = 4092\) điều.

Lời giải

Cho tứ diện \(ABCD\) có tất cả các cạnh đều bằng \(8\). Gọi \(G\) là trọng tâm tam giác \(ABC\), mặt phẳng \((CGD)\) cắt tứ diện theo một thiết diện có diện tích là. (làm tròn đến hàng phần mười) (ảnh 1)

Gọi giao điểm của \(CG\) với \(AB\) là \(I\).

Thiết diện của mặt phẳng \((CGD)\) với tứ diện \(ABCD\) là tam giác \(DCI\).

Ta có \(G\) là trọng tâm tam giác đều \(ABC\) nên ta có \(CI = \frac{{8\sqrt 3 }}{2} = 4\sqrt 3 \) và \(CG = \frac{{8\sqrt 3 }}{3}\).

Áp dụng định lí Pytago nên \(DG = \sqrt {D{C^2} - C{G^2}}  = \frac{{8\sqrt 6 }}{3}\).

Vậy \({S_{DCI}} = \frac{1}{2}DG \cdot CI = \frac{1}{2} \cdot \frac{{8\sqrt 6 }}{3} \cdot \frac{{8\sqrt 3 }}{2} = 16\sqrt 2  = 22,6\)

Câu 5

A. \(51,2\).                  
B. \(51,3\).                  
C. \(102,3\).                                   
D. \(51,1\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hai đường thẳng chéo nhau thì không có điểm chung.              
B. Hai đường thẳng phân biệt không cắt nhau và không song song thì chéo nhau.              
C. Hai đường thẳng không có điểm chung thì chéo nhau.              
D. Hai đường thẳng phân biệt không chéo nhau thì hoặc cắt nhau hoặc song song.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP