PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian cho hai đường thẳng song song \[a\] và \[b\]. Kết luận nào sau đây đúng?
PHẦN I. Câu trắc nghiệm nhiều phương án lựa chọn. Thí sinh trả lời từ câu 1 đến câu 12. Mỗi câu hỏi thí sinh chỉ chọn một phương án.
Trong không gian cho hai đường thẳng song song \[a\] và \[b\]. Kết luận nào sau đây đúng?Quảng cáo
Trả lời:
Nếu \[c\] cắt \[a\] thì \[c\] có thể chéo \[b\] nên A sai.
Nếu \[c\] chéo \[a\] thì \[c\] có thể cắt \[b\] nên B sai.
Nếu \[c\] cắt \[a\] thì \[c\] có thể cắt \[b\] nên C sai.
Vậy chọn D
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Trọng tâm Sử, Địa, GD KTPL 11 cho cả 3 bộ Kết nối, Chân trời, Cánh diều VietJack - Sách 2025 ( 38.000₫ )
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Để tàu có thể hạ thủy thì mực nước sâu \(4,6m\), tức là
\[\begin{array}{l}h\left( t \right) = 0,8\cos 0,5t + 5 = 4,6 & \Leftrightarrow \cos 0,5t = - \frac{1}{2}\\ & \Leftrightarrow 0,5t = \pm \frac{{2\pi }}{3} + k2\pi \Leftrightarrow \left[ \begin{array}{l}t = \frac{{4\pi }}{3} + k4\pi \\t = - \frac{{4\pi }}{3} + l4\pi \end{array} \right.\,\left( {k,l \in \mathbb{Z}} \right)\end{array}\].
Do \(0 \le t \le 12\) nên
Với \(k = 0\), suy ra \(t = \frac{{4\pi }}{3} \approx 4,19\) (giờ).
Với \(l = 1\), suy ra \(t = \frac{{2\pi }}{3} \approx 2,09\) (giờ).
Vậy, có 2 thời điểm trong vòng 12 tiếng sau khi thủy triều lên lần đầu tiên trong ngày tàu có thể hạ thủy.
Lời giải
|
a) |
Đ |
b) |
S |
c) |
Đ |
d) |
Đ |
a. b. Trong \((SAC):AM \cap SO = I\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{I \in AM}\\{I \in SO \subset (SBD)}\end{array} \Rightarrow I \in AM \cap (SBD)} \right.\).
Tam giác \(SAC\) có hai đường trung tuyến \(AM\) và \(SO\) cắt nhau tại \(I\), suy ra \(I\) là trọng tâm của tam giác \(SAC\). Từ đó ta có \(IA = 2IM\).
c. Trong \((SBD):BI \cap SD = E\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{E \in SD}\\{E \in BI \subset (ABM)}\end{array} \Rightarrow I \in SD \cap (ABM)} \right.\).

d. Trong \((ABCD):CN \cap BD = F\).
Trong \((SNC):SF \cap MN = J\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SF \subset (SBD)}\end{array} \Rightarrow J \in MN \cap (SBD)} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
