Độ sâu \(h\left( m \right)\) của mực nước ở một cảng biển vào thời điểm \(t\) (giờ) sau khi thủy triều lên lần đầu tiên trong ngày được tính xấp xỉ bởi công thức \(h\left( t \right) = 0,8\cos 0,5t + 5\)

(Theo https://noc.ac.uk/files/documents/ business/an-introduction-to-tidalmodelling.pdf)
Một con tàu cần mực nước sâu \(4,6m\) để có thể di chuyển ra vào cảng an toàn. Hỏi có bao nhiêu thời điểm trong vòng 12 tiếng sau khi thủy triều lên lần đầu tiên trong ngày tàu có thể hạ thủy?
Độ sâu \(h\left( m \right)\) của mực nước ở một cảng biển vào thời điểm \(t\) (giờ) sau khi thủy triều lên lần đầu tiên trong ngày được tính xấp xỉ bởi công thức \(h\left( t \right) = 0,8\cos 0,5t + 5\)

(Theo https://noc.ac.uk/files/documents/ business/an-introduction-to-tidalmodelling.pdf)
Một con tàu cần mực nước sâu \(4,6m\) để có thể di chuyển ra vào cảng an toàn. Hỏi có bao nhiêu thời điểm trong vòng 12 tiếng sau khi thủy triều lên lần đầu tiên trong ngày tàu có thể hạ thủy?
Quảng cáo
Trả lời:
Để tàu có thể hạ thủy thì mực nước sâu \(4,6m\), tức là
\[\begin{array}{l}h\left( t \right) = 0,8\cos 0,5t + 5 = 4,6 & \Leftrightarrow \cos 0,5t = - \frac{1}{2}\\ & \Leftrightarrow 0,5t = \pm \frac{{2\pi }}{3} + k2\pi \Leftrightarrow \left[ \begin{array}{l}t = \frac{{4\pi }}{3} + k4\pi \\t = - \frac{{4\pi }}{3} + l4\pi \end{array} \right.\,\left( {k,l \in \mathbb{Z}} \right)\end{array}\].
Do \(0 \le t \le 12\) nên
Với \(k = 0\), suy ra \(t = \frac{{4\pi }}{3} \approx 4,19\) (giờ).
Với \(l = 1\), suy ra \(t = \frac{{2\pi }}{3} \approx 2,09\) (giờ).
Vậy, có 2 thời điểm trong vòng 12 tiếng sau khi thủy triều lên lần đầu tiên trong ngày tàu có thể hạ thủy.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- Sách - Sổ tay kiến thức trọng tâm Vật lí 11 VietJack - Sách 2025 theo chương trình mới cho 2k8 ( 45.000₫ )
- Trọng tâm Hóa học 11 dùng cho cả 3 bộ sách Kết nối, Cánh diều, Chân trời sáng tạo VietJack - Sách 2025 ( 58.000₫ )
- Sách lớp 11 - Trọng tâm Toán, Lý, Hóa, Sử, Địa lớp 11 3 bộ sách KNTT, CTST, CD VietJack ( 52.000₫ )
- Sách lớp 10 - Combo Trọng tâm Toán, Văn, Anh và Lí, Hóa, Sinh cho cả 3 bộ KNTT, CD, CTST VietJack ( 75.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Câu 1
Lời giải
Nếu \[c\] cắt \[a\] thì \[c\] có thể chéo \[b\] nên A sai.
Nếu \[c\] chéo \[a\] thì \[c\] có thể cắt \[b\] nên B sai.
Nếu \[c\] cắt \[a\] thì \[c\] có thể cắt \[b\] nên C sai.
Vậy chọn D
Lời giải
|
a) |
Đ |
b) |
S |
c) |
Đ |
d) |
Đ |
a. b. Trong \((SAC):AM \cap SO = I\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{I \in AM}\\{I \in SO \subset (SBD)}\end{array} \Rightarrow I \in AM \cap (SBD)} \right.\).
Tam giác \(SAC\) có hai đường trung tuyến \(AM\) và \(SO\) cắt nhau tại \(I\), suy ra \(I\) là trọng tâm của tam giác \(SAC\). Từ đó ta có \(IA = 2IM\).
c. Trong \((SBD):BI \cap SD = E\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{E \in SD}\\{E \in BI \subset (ABM)}\end{array} \Rightarrow I \in SD \cap (ABM)} \right.\).

d. Trong \((ABCD):CN \cap BD = F\).
Trong \((SNC):SF \cap MN = J\).
Ta có \(\left\{ {\begin{array}{*{20}{l}}{J \in MN}\\{J \in SF \subset (SBD)}\end{array} \Rightarrow J \in MN \cap (SBD)} \right.\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 6
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.