Câu hỏi:

27/10/2025 8,588 Lưu

PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.

Một phần đường chạy của tàu lượn siêu tốc (hình 1) khi gắn hệ trục toạ độ \[{\rm{O}}xy\] được mô phỏng ở hình 2, đơn vị trên mỗi trục là mét. Biết đường chạy của nó là một phần đồ thị hàm bậc ba \(y = a{x^3} + b{x^2} + cx + d\,\left( {0 \le x < 90} \right)\); tàu lượn siêu tốc xuất phát từ điểm \(A\), đi qua các điểm \(C,D\) đồng thời đạt độ cao nhỏ nhất so với mặt đất là \(6m\). Độ cao lớn nhất mà tàu lượn siêu tốc đạt được là bao nhiêu mét so với mặt đất? (Kết quả làm tròn đến hàng phần chục).
Một phần đường chạy của tàu l (ảnh 1)

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Dựa vào hình 2 ta thấy đồ thị hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\,\,\left( {a < 0} \right)\) và đường thẳng \(y = 30\) cắt nhau tại 3 điểm phân biệt có hoành độ \(x = 0;x = 50;x = 80.\)

\( \Rightarrow a{x^3} + b{x^2} + cx + d\, = 30 \Leftrightarrow a{x^3} + b{x^2} + cx + d - 30 = 0\)có 3 nghiệm phân biệt \(x = 0;x = 50;x = 80.\)

\( \Rightarrow a{x^3} + b{x^2} + cx + d - 30 = ax\left( {x - 50} \right)\left( {x - 80} \right) = a\left( {{x^3} - 130{x^2} + 4000x} \right)\)

Suy ra \(f\left( x \right) = a\left( {{x^3} - 130{x^2} + 4000x} \right) + 30\) \( \Rightarrow f'\left( x \right) = a\left( {3{x^2} - 260x + 4000} \right)\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 20\,\,\left( {TM} \right)}\\{x = \frac{{200}}{3}\,\left( {TM} \right)}\end{array}} \right.\).

Theo bài ra độ cao nhỏ nhất bằng 6 hay \(f\left( {20} \right) = 6 \Leftrightarrow a =  - \frac{1}{{1500}}\)

Độ cao lớn nhất mà tàu lượn siêu tốc đạt được là \(f\left( {\frac{{200}}{3}} \right) = \frac{{3230}}{{81}} \approx 39,9.\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

a)

Đ

b)

Đ

c)

Đ

d)

Đ

 

(a)  \(\overrightarrow {AB}  = (1 - 4; - 1 - 2;2 + 1) = ( - 3; - 3;3)\)

(b) \(\overrightarrow {AB}  = (1 - 4; - 1 - 2;2 + 1) = ( - 3; - 3;3) \Rightarrow |\overrightarrow {AB} | = \sqrt {{{( - 3)}^2} + {{( - 3)}^2} + {3^2}}  = 3\sqrt 3 \)

(c) Gọi \(M(x;y;z)\) thì \(\overrightarrow {MC}  = ( - x; - 2 - y,3 - z)\).

\({\rm{ V\`i  }}\overrightarrow {AB}  + \overrightarrow {CM}  = \vec 0 \Rightarrow \overrightarrow {AB}  = \overrightarrow {MC}  \Rightarrow \left\{ {\begin{array}{*{20}{l}}{ - x =  - 3}\\{ - 2 - y =  - 3}\\{3 - z = 3}\end{array} \Leftrightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\\{z = 0}\end{array}} \right..{\rm{ }} \Rightarrow {\rm{M(3; }}1;0)} \right.{\rm{. }}\)

(d) Vì \[N\] thuộc mặt phẳng \[\left( {Oxy} \right)\] nên tọa độ điểm \[N\] là \(N(x;y;0)\)

Тa có: \(\overrightarrow {AN} (x - 4;y - 2;1);\overrightarrow {BN} (x - 1;y + 1; - 2)\)

Để \(A,B,N\) thẳng hàng thì hai vectơ \(\overrightarrow {AN} ,\overrightarrow {BN} \) cùng phương. Do đó, \(\overrightarrow {AN}  = k\overrightarrow {BN} \) (với \(k\) là số thực bất kì)

Suy ra, \(\left\{ {\begin{array}{*{20}{l}}{x - 4 = k(x - 1)}\\{y - 2 = k(y + 1)}\\{1 =  - 2k}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x - 4 =  - \frac{1}{2}(x - 1)}\\{y - 2 =  - \frac{1}{2}(y + 1)}\\{k = \frac{{ - 1}}{2}}\end{array} \Rightarrow \left\{ {\begin{array}{*{20}{l}}{x = 3}\\{y = 1}\end{array}} \right.} \right.} \right.\). Vậy \[N\left( {3;1;0} \right)\]

Lời giải

Gọi \(x\) \(\left( {1 \le x \le 20,x \in \mathbb{N}} \right)\) là số máy sử dụng và \(C\left( x \right)\) là hàm tổng chi phí sản xuất tương ứng.

Chi phí lắp đặt các máy là \(80x\)

Chi phí vận hành các máy là \(\frac{{400000}}{{200x}}.5,76\)

Tổng chi phí = Chi phí lắp đặt + Chi phí vận hành \( \Rightarrow C\left( x \right) = 80x + \frac{{11520}}{x}\)

Bài toán trở thành tìm giá trị nhỏ nhất của hàm số \(C\left( x \right)\) với \(x \in \left[ {1;20} \right]\)

Ta có \(C'\left( x \right) = 80 - \frac{{11520}}{{{x^2}}} \Rightarrow C'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 12\left( {tm} \right)\\x =  - 12\left( {ktm} \right)\end{array} \right.\)

Đồng thời \[\left\{ \begin{array}{l}C\left( 1 \right) = 11600\\C\left( {20} \right) = 2176\\C\left( {12} \right) = 1920\end{array} \right. \Rightarrow \mathop {\max }\limits_{x \in \left[ {1;20} \right]} C\left( x \right) = C\left( {12} \right) = 1920 \Leftrightarrow x = 12\]

Vậy công ty nên sử dụng 12 máy để sản xuất thì tổng chi phí sẽ nhỏ nhất.

Câu 4

A. \[D\left( { - 12; - 1;3} \right)\].                 
B. \[\left[ \begin{array}{l}D\left( { - 8; - 7;1} \right)\\D\left( {12;1; - 3} \right)\end{array} \right.\].              
C. \[D\left( {8;7; - 1} \right)\].                      
D. \[\left[ \begin{array}{l}D\left( {8;7; - 1} \right)\\D\left( { - 12; - 1;3} \right)\end{array} \right.\].

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 5

Cho hàm số \(y = f(x) = {x^3} + 8{x^2} + 5x + 1.\)

              a) Đạo hàm \(f'(x) = 3{x^2} + 8x + 5.\)

              b) Hai điểm cực trị của đồ thị hàm số nằm cùng phía so với trục \[Oy.\]

              c) \(f(0) < f(x)\)với mọi \(x \in \mathbb{R}.\)

              d) Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP