Câu hỏi:

27/10/2025 41 Lưu

Một người đứng ở mặt đất điều khiển hai flycam để phục vụ trong một chương trình của đài truyền hình. Flycam I ở vị trí \(A\) cách vị trí điều khiển \(150\;{\rm{m}}\) về phía nam và \(200\;{\rm{m}}\) về phía đông, đồng thời cách mặt đất \(50\;{\rm{m}}\). Flycam II ở vị trí \(B\) cách vị trí điều khiển \(180\;{\rm{m}}\) về phía bắc và \(240\;{\rm{m}}\) về phía tây, đồng thời cách mặt đất \(60\;{\rm{m}}\). Chọn hệ trục toạ độ \(Oxyz\)với gốc \(O\) là vị trí người điều khiển, mặt phẳng \(\left( {Oxy} \right)\) trùng với mặt đất, trục \(Ox\)có hướng trùng với hướng nam, trục \(Oy\)trùng với hướng đông, trục \(Oz\)vuông góc với mặt đất hướng lên bầu trời, đơn vị trên mỗi trục tính theo mét. Khoảng cách giữa hai flycam đó bằng bao nhiêu mét ( làm tròn đến hàng đơn vị)?

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Ta có: Vị trí \(A,B\)có tọa độ lần lượt là: \((150;200;50),( - 180; - 240;60)\). Suy ra khoảng cách giữa hai flycam đó bằng:

\(AB = \sqrt {{{( - 180 - 150)}^2} + {{( - 240 - 200)}^2} + {{(60 - 50)}^2}}  \approx 550(\;{\rm{m}}).\)

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Dựa vào hình 2 ta thấy đồ thị hàm số \(y = f(x) = a{x^3} + b{x^2} + cx + d\,\,\left( {a < 0} \right)\) và đường thẳng \(y = 30\) cắt nhau tại 3 điểm phân biệt có hoành độ \(x = 0;x = 50;x = 80.\)

\( \Rightarrow a{x^3} + b{x^2} + cx + d\, = 30 \Leftrightarrow a{x^3} + b{x^2} + cx + d - 30 = 0\)có 3 nghiệm phân biệt \(x = 0;x = 50;x = 80.\)

\( \Rightarrow a{x^3} + b{x^2} + cx + d - 30 = ax\left( {x - 50} \right)\left( {x - 80} \right) = a\left( {{x^3} - 130{x^2} + 4000x} \right)\)

Suy ra \(f\left( x \right) = a\left( {{x^3} - 130{x^2} + 4000x} \right) + 30\) \( \Rightarrow f'\left( x \right) = a\left( {3{x^2} - 260x + 4000} \right)\)

\(f'\left( x \right) = 0 \Leftrightarrow \left[ {\begin{array}{*{20}{c}}{x = 20\,\,\left( {TM} \right)}\\{x = \frac{{200}}{3}\,\left( {TM} \right)}\end{array}} \right.\).

Theo bài ra độ cao nhỏ nhất bằng 6 hay \(f\left( {20} \right) = 6 \Leftrightarrow a =  - \frac{1}{{1500}}\)

Độ cao lớn nhất mà tàu lượn siêu tốc đạt được là \(f\left( {\frac{{200}}{3}} \right) = \frac{{3230}}{{81}} \approx 39,9.\)

Lời giải

Gọi \(x\) \(\left( {1 \le x \le 20,x \in \mathbb{N}} \right)\) là số máy sử dụng và \(C\left( x \right)\) là hàm tổng chi phí sản xuất tương ứng.

Chi phí lắp đặt các máy là \(80x\)

Chi phí vận hành các máy là \(\frac{{400000}}{{200x}}.5,76\)

Tổng chi phí = Chi phí lắp đặt + Chi phí vận hành \( \Rightarrow C\left( x \right) = 80x + \frac{{11520}}{x}\)

Bài toán trở thành tìm giá trị nhỏ nhất của hàm số \(C\left( x \right)\) với \(x \in \left[ {1;20} \right]\)

Ta có \(C'\left( x \right) = 80 - \frac{{11520}}{{{x^2}}} \Rightarrow C'\left( x \right) = 0 \Leftrightarrow \left[ \begin{array}{l}x = 12\left( {tm} \right)\\x =  - 12\left( {ktm} \right)\end{array} \right.\)

Đồng thời \[\left\{ \begin{array}{l}C\left( 1 \right) = 11600\\C\left( {20} \right) = 2176\\C\left( {12} \right) = 1920\end{array} \right. \Rightarrow \mathop {\max }\limits_{x \in \left[ {1;20} \right]} C\left( x \right) = C\left( {12} \right) = 1920 \Leftrightarrow x = 12\]

Vậy công ty nên sử dụng 12 máy để sản xuất thì tổng chi phí sẽ nhỏ nhất.

Câu 4

Cho hàm số \(y = f(x) = {x^3} + 8{x^2} + 5x + 1.\)

              a) Đạo hàm \(f'(x) = 3{x^2} + 8x + 5.\)

              b) Hai điểm cực trị của đồ thị hàm số nằm cùng phía so với trục \[Oy.\]

              c) \(f(0) < f(x)\)với mọi \(x \in \mathbb{R}.\)

              d) Hàm số đã cho đồng biến trên khoảng \(\left( { - 1; + \infty } \right).\)

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP