Một con thuyền rời bến \(O(0,0)\) trên một bờ sông, luôn đi với vận tốc không đổi 20 dặm/giờ hướng về bến \(A(1000,0)\) (phía đông của \(O\)); đồng thời nước sông chảy ngược lên phía bắc với tốc độ 5 dặm/giờ. Người ta cho rằng đường đi của thuyền là \(y = 500\left[ {{{\left( {\frac{{1000 - x}}{{1000}}} \right)}^{3/4}} - {{\left( {\frac{{1000 - x}}{{1000}}} \right)}^{5/4}}} \right],\quad 0 \le x \le 1000\)Tìm độ lệch bắc lớn nhất mà thuyền đạt được trong suốt hành trình.

Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
Đặt \(u = \frac{{1000 - x}}{{1000}},\quad {\rm{ th\`i }}0 \le u \le 1,\quad x = 1000(1 - u).\)
Khi đó \(y(u) = 500\left( {{u^{3/4}} - {u^{5/4}}} \right).\)
Tính đạo hàm theo \(u\): \(500\left( {\frac{3}{4}{u^{ - 1/4}} - \frac{5}{4}{u^{1/4}}} \right) = 500 \cdot \frac{1}{4}{u^{ - 1/4}}(3 - 5u)\)
Vì \({u^{ - 1/4}} > 0\) trên \((0,1]\), ta chỉ cần giải \(3 - 5u = 0 \Rightarrow u = \frac{3}{5} = 0,6\)
Lập bảng xét dấu ta có

Suy ra \(y(u)\) đạt điểm cực đại tại \(u = 0,6\)
Chuyển lại thành \(x\) và tính
- Tương ứng \(x = 1000(1 - u) = 1000 \cdot 0,4 = 400\).
- Độ lệch bắc cực đại là
Do đó giá trị tại \(x = 400\)
Kết luận:
Trong suốt hành trình, con thuyền bị dòng nước đẩy lệch về phía bắc cực đại khoảng
76,6 (đơn vị chiều dài) khi nó đã đi được \(x = 400\) (đơn vị tương ứng) về phía đông.
Hot: 1000+ Đề thi cuối kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- 20 Bộ đề, Tổng ôn, sổ tay môn Toán (có đáp án chi tiết) ( 55.000₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Bộ đề thi tốt nghiệp 2025 các môn Toán, Lí, Hóa, Văn, Anh, Sinh, Sử, Địa, KTPL (có đáp án chi tiết) ( 36.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Vì \(\Delta DHN\) đồng dạng với \(\Delta DBA\) nên \(\frac{{DN}}{{DA}} = \frac{{NH}}{{AB}} = x\), với \(0 < x < 1\).
Khi đó \(NH = x.AB\); \(DN = x.DA \Rightarrow AN = \left( {1 - x} \right)DA\).
Ta có \({S_{AMHN}} = AN.NH = x\left( {1 - x} \right).AB.DA = x\left( {1 - x} \right){S_{ABCD}} = 25x\left( {1 - x} \right)\).
Số tiền người chủ cần chuẩn bị để trồng cỏ là \(80.25x\left( {1 - x} \right)\) (nghìn đồng).
Để số tiền lớn nhất thì \(f\left( x \right) = x\left( {1 - x} \right)\) đạt giá trị lớn nhất trên khoảng \(\left( {0;1} \right)\).
Nhận thấy \(f\left( x \right) = x\left( {1 - x} \right) = x - {x^2} = \frac{1}{4} - {\left( {\frac{1}{2} - x} \right)^2} \le \frac{1}{4},\forall x \in \left( {0;1} \right)\). Dấu bằng xảy ra khi và chỉ khi \(x = \frac{1}{2}\).
Vậy số tiền lớn nhất người chủ cần chuẩn bị để trồng cỏ là \(500\) (nghìn đồng).
Lời giải
Do vị trí \(M(a;b;c)\) thỏa mãn \(MA = 3,\,MB = 6,\,MC = 5,\,MD = 13\)
\[\overrightarrow {AM} = \left( {a - 3;b - 1;c} \right) \Rightarrow {\left( {a - 3} \right)^2} + {\left( {b - 1} \right)^2} + {c^2} = {3^2}\]
\[ \Rightarrow {a^2} + {b^2} + {c^2} - 6a - 2b + 1 = 0\left( 1 \right)\]
\[\overrightarrow {BM} = \left( {a - 3;b - 6;c - 6} \right) \Rightarrow {\left( {a - 3} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 6} \right)^2} = {6^2}\]
\[ \Rightarrow {a^2} + {b^2} + {c^2} - 6a - 12b - 12c + 45 = 0\left( 2 \right)\]
\[\overrightarrow {CM} = \left( {a - 4;b - 6;c - 2} \right) \Rightarrow {\left( {a - 4} \right)^2} + {\left( {b - 6} \right)^2} + {\left( {c - 2} \right)^2} = {5^2}\]
\[ \Rightarrow {a^2} + {b^2} + {c^2} - 8a - 12b - 4c + 31 = 0\left( 3 \right)\]
\[\overrightarrow {DM} = \left( {a - 6;b - 2;c - 14} \right) \Rightarrow {\left( {a - 6} \right)^2} + {\left( {b - 2} \right)^2} + {\left( {c - 14} \right)^2} = {13^2}\]
\[ \Rightarrow {a^2} + {b^2} + {c^2} - 12a - 4b - 28c + 67 = 0\left( 4 \right)\]
Từ \(\left( 1 \right),\,\left( 2 \right),\,\left( 3 \right),\,\left( 4 \right)\) ta có hệ phương trình \[ \Leftrightarrow \left\{ \begin{array}{l}10b + 12c = 44\\2a + 10b + 4c = 30\\6a + 2b + 28c = 66\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b = 2\\c = 2\end{array} \right.\]
\[ \Rightarrow M\left( {1;2;2} \right) \Rightarrow \overrightarrow {OM} \left( {1;2;2} \right) \Rightarrow OM = \sqrt {{1^2} + {2^2} + {2^2}} = 3\].
Vậy khoảng cách từ điểm \(M\) đến điểm \(O\) bằng \(3\).
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 5
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Ngày khai giảng năm học \(2024 - 2025\). Học sinh khối \(12\) trường THPT Nguyễn Hiền thả chùm bóng bay gắn thông điệp “Học Sinh khối \(12\) chiến thắng CT\(2018\)”. Ước tính độ cao \(h\)(tính bằng\(km\)) của chùm bóng bay so với mặt đất vào thời điểm\(t\) (đơn vị giờ) được cho bởi công thức \(h\left( t \right) = - {t^3} + 3{t^2},\left( {0 \le t \le 3} \right)\). Chùm bóng bay đạt độ cao lớn nhất so với mặt đất là: \(a\left( {km} \right)\). Tìm \(a?\)
PHẦN III. Câu trắc nghiệm trả lời ngắn. Thí sinh trả lời từ câu 1 đến câu 6.
Ngày khai giảng năm học \(2024 - 2025\). Học sinh khối \(12\) trường THPT Nguyễn Hiền thả chùm bóng bay gắn thông điệp “Học Sinh khối \(12\) chiến thắng CT\(2018\)”. Ước tính độ cao \(h\)(tính bằng\(km\)) của chùm bóng bay so với mặt đất vào thời điểm\(t\) (đơn vị giờ) được cho bởi công thức \(h\left( t \right) = - {t^3} + 3{t^2},\left( {0 \le t \le 3} \right)\). Chùm bóng bay đạt độ cao lớn nhất so với mặt đất là: \(a\left( {km} \right)\). Tìm \(a?\)Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

