Cho hàm số \(y = \frac{{x - {m^2}}}{{x + 8}}\) với \(m\) là tham số thực. Giả sử \({m_0}\) là giá trị dương của tham số \(m\) để hàm số có giá trị nhỏ nhất trên đoạn \(\left[ {0;3} \right]\) bằng 3. Giá trị \({m_0}\) thuộc khoảng nào trong các khoảng cho dưới đây?              
                                    
                                                                                                                        Câu hỏi trong đề: Bộ 20 đề thi Giữa kì 1 Toán 12 có đáp án !!
Quảng cáo
Trả lời:
 Giải bởi Vietjack
                                        Giải bởi Vietjack
                                    Chọn A
+ TXĐ: \(D = \mathbb{R}\backslash \left\{ { - 8} \right\}\).
+
Vậy hàm số \(y = \frac{{x - {m^2}}}{{x + 8}}\) đồng biến trên \(\left[ {0;3} \right]\).
\[ \Rightarrow \mathop {\min }\limits_{\left[ {0;3} \right]} y = y(0) = \frac{{ - {m^2}}}{8}\]
Để \[\mathop {\min }\limits_{\left[ {0;3} \right]} y = - 3 \Leftrightarrow \frac{{ - {m^2}}}{8} = - 3 \Leftrightarrow m = \pm 2\sqrt 6 .\]
\( \Rightarrow {m_0} = 2\sqrt 6 \in \left( {2;5} \right)\). Vậy chọnA.
Hot: 1000+ Đề thi giữa kì 1 file word cấu trúc mới 2025 Toán, Văn, Anh... lớp 1-12 (chỉ từ 60k). Tải ngay
- 20 đề thi tốt nghiệp môn Toán (có đáp án chi tiết) ( 38.500₫ )
- 500 Bài tập tổng ôn môn Toán (Form 2025) ( 38.500₫ )
- Sổ tay lớp 12 các môn Toán, Lí, Hóa, Văn, Sử, Địa, KTPL (chương trình mới) ( 36.000₫ )
- Tuyển tập 30 đề thi đánh giá năng lực Đại học Quốc gia Hà Nội, TP Hồ Chí Minh (2 cuốn) ( 150.000₫ )
CÂU HỎI HOT CÙNG CHỦ ĐỀ
Lời giải
Ta có công thức lượng muối \(x\) (pound) trong bể sau \(t\) phút:
\(x(t) = 1,5(10 - t) - 0,0013{(10 - t)^4};\quad 0 \le t \le 10\)
Đặt \(u = 10 - t\). Khi \(t\) chạy từ 0 đến 10 thì \(u\) chạy từ 10 xuống 0.
Khi đó \(x = 1,5u - 0,0013{u^4};\quad 0 \le u \le 10\)
Tính đạo hàm theo \(u\) ta được: \(1,5 - 0,0013 \cdot 4{u^3} = 1,5 - 0,0052{u^3}\)
Xét \(1,5 - 0,0052{u^3} = 0 \Rightarrow {u^3} = \frac{{1,5}}{{0,0052}} \approx 288,46 \Rightarrow u \approx \sqrt[3]{{288,46}} \approx 6,62\)
Lập bảng xét dấu ta được:

Suy ra tại \(u \approx 6,62\):
Lượng muối trong bể đạt tối đa khoảng 7,43 lb tại thời điểm \(t \approx 3,38\) phút kể từ lúc bắt đầu.
Lời giải
Ta có doanh thu của doanh nghiệp khi bán \(x\) máy tính bảng là: \(D\left( x \right) = x.p\left( x \right) = x\left( {4000 - 10x} \right) = 4000x - 10{x^2}\).
Chi phí của doanh nghiệp để sản xuất \(x\) máy tính bảng là: \(C\left( x \right) = x.c\left( x \right) = x\left( {{x^2} - 70x + 400 + \frac{{1000}}{x}} \right) = {x^3} - 70{x^2} + 400x + 1000\).
Lợi nhuận của doanh nghiệp khi bán \(x\) máy tính bảng là: \(L\left( x \right) = D\left( x \right) - C\left( x \right) = 4000x - 10{x^2} - \left( {{x^3} - 70{x^2} + 400x + 1000} \right)\)\( = - {x^3} + 60{x^2} + 3600x - 1000\).
Xét hàm \(L\left( x \right) = - {x^3} + 60{x^2} + 3600x - 1000\left( {1 \le x \le 200;x \in \mathbb{N}} \right)\).
Có \(y' = - 3{x^2} + 120x + 3600\).
\(y' = 0 \Leftrightarrow \left[ \begin{array}{l}x = 60\,\,\,\,\,\,\left( N \right)\\x = - 20\,\,\,\left( L \right)\end{array} \right.\).
Ta có bảng biến thiên

Dựa vào bảng biến thiên ta thấy doanh nghiệp đó sẽ bán \(60\) máy tính bảng để lợi nhuận cao nhất.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.
Câu 7
Lời giải
Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.




 Nhắn tin Zalo
 Nhắn tin Zalo