Câu hỏi:

28/10/2025 64 Lưu

Cho hàm số \(f(x) = a{x^3} + b{x^2} + cx + 3\,\left( {a \ne 0} \right)\) có bảng biến thiên như sau:
Chọn D  Ta có \(y' = 2x - 4 = 0 \L (ảnh 1)
Xác định dấu của hệ số \(a,b,c\).              

A. \(a > 0,b < 0,c > 0\).                                  
B. \(a < 0.b < 0,c < 0\).                          
C. \(a > 0,b > 0,c > 0\).         
D. \(a < 0,b < 0,c > 0\).

Quảng cáo

Trả lời:

verified Giải bởi Vietjack

Chọn A

Ta có: \(f'\left( x \right) = 3a{x^2} + 2bx + c\)

\(\left\{ \begin{array}{l}f'\left( {\frac{1}{3}} \right) = 0\\f'\left( 1 \right) = 0\\f\left( {\frac{1}{3}} \right) = \frac{{85}}{{27}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}\frac{1}{3}a + \frac{2}{3}b + c = 0\\3a + 2b + c = 0\\\frac{1}{{27}}a + \frac{1}{9}b + \frac{1}{3}c + 3 = \frac{{85}}{{27}}\end{array} \right. \Leftrightarrow \left\{ \begin{array}{l}a = 1\\b =  - 2\\c = 1\end{array} \right.\)

Vậy \(a > 0,b < 0,c > 0\).

Cách 2: Thầy Trí Đinh Văn góp ý.

Dựa vào bảng biến thiên: \(\mathop {\lim y}\limits_{x \to  + \infty }  =  + \infty  \Rightarrow a > 0\) (Loại được C và D).

Hàm số có hai điểm cực trị .

CÂU HỎI HOT CÙNG CHỦ ĐỀ

Lời giải

Ta có \(\vec P = m\vec g\) suy ra \(P = mg = 20.10 = 200\left( {{\rm{\;N}}} \right)\).

Vậy trọng lực tác dụng lên em bé là 200 N.

Ta có \(A = P \cdot s \cdot \cos \left( {\vec P,\vec s} \right) = 200 \cdot 2 \cdot \cos {80^ \circ } \approx 69\) (J).

Vậy công sinh bởi trọng lực \(\vec P\) khi em bé trượt hết chiều dài cầu trượt là 306 J.

Lời giải

a)

S

b)

Đ

c)

S

d)

Đ

(a) Đúng: Áp dụng công thức tính độ dài đoạn thẳng ta tính được

\(AB = CD = \sqrt {10} ;AC = BD = \sqrt {13} ;AD = BC = \sqrt 5 \)

Vậy tứ diện \(ABCD\) có các cạnh đối đôi một bằng nhau

(b) Sai: Ta có: \(\overrightarrow {AB}  = \left( { - 1;0;3} \right),\overrightarrow {CD}  = \left( { - 1;0; - 3} \right)\). Gọi \(\varphi \) là góc giữa \(AB\) và \(CD\)

\(\cos \varphi  = \cos \left( {\overrightarrow {AB} ,\overrightarrow {CD} } \right) = \frac{{\left| { - 8} \right|}}{{\sqrt {10} .\sqrt {10} }} = \frac{4}{5}\)

Vậy góc giữa \(AB\) và \(CD\) là \(\varphi  = \arccos 0,8\)

(c) Sai: Lấy \[I\] trung điểm của \(AB,J\) là trung điểm của \(CD\)

\(\Delta ACD = \Delta BCD\)(c.c.c) nên 2 đường trung tuyến tương ứng \(AJ = BJ\).

Vậy \(\Delta AJB\) cân đỉnh \(J\) nên \[IJ\] vuông góc với \(AB\) tại \(I\).

Tương tự \(\Delta ICD\) cân đỉnh \[I\] nên \[IJ\] vuông góc với \(CD\) tại \(J\).

Vậy \[IJ\] là đường vuông góc chung của \(AB\) và \(CD\) ta được \(I\left( {\frac{3}{2};1;\frac{3}{2}} \right)\) và \(J\left( {\frac{3}{2}; - 1;\frac{3}{2}} \right)\)

Vậy khoảng cách giữa \(AB\) và \(CD\) chính là độ dài đoạn vuông góc chung \(IJ\).

\(d\left( {AB;CD} \right) = II = \sqrt {{{\left( {\frac{3}{2} - \frac{3}{2}} \right)}^2} + {{\left[ {1 - \left( { - 1} \right)} \right]}^2} + {{\left( {\frac{3}{2} - \frac{3}{2}} \right)}^2}}  = 2\)

(d) Đúng: Theo kết quả câu 3. Lấy \[G\] là trung điểm của \(IJ\) ta được:

\(GA = GB\)vì \(\Delta GAB\) cân đỉnh \(G\);\(GC = GD\) vì \(\Delta GCD\) cân đỉnh \(G\)

Mà \(GA = \sqrt {G{I^2} + I{A^2}} \) mà \(GI = GJ,IA = ID\) và \(GC = \sqrt {G{J^2} + I{D^2}} \)

Do đó \(GA = GB = GC = GD = R\)

Do đó \[G\]: Tâm mặt cầu ngoại tuyến khối tứ diện \(ABCD:G\left( {\frac{3}{2};0;\frac{3}{2}} \right)\) và bán kính của mặt cầu là \(R = GA = \frac{{\sqrt {14} }}{2}\) (\[G\]: cũng chính là trọng tâm của khối tứ diện gần đều \(ABCD\))

Câu 5

A.  \(10\).                    
B. \(16\).                    
C.  \(12\).              
D.  \(8\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 6

A. Hai vectơ\[\overrightarrow x ;\overrightarrow y \]không cùng phương.                                                  
B. Hai vectơ\[\overrightarrow x ;\overrightarrow z \]cùng phương.              
C. Ba vectơ\[\overrightarrow x ;\overrightarrow y ;\overrightarrow z \]đồng phẳng.                               
D. Hai vectơ\[\overrightarrow y ;\overrightarrow z \]cùng phương.

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP

Câu 7

A. \(m = - 1\,;\,M = 0\).                                
B. \(m = - 5\,;\,M = 0\).              
C. \(m = - 5\,;\,M = - 1\).                             
D. \(m = - 2\,;\,M = 2\).

Lời giải

Bạn cần đăng ký gói VIP ( giá chỉ từ 199K ) để làm bài, xem đáp án và lời giải chi tiết không giới hạn.

Nâng cấp VIP